Закон Бенфорда – очередной поразительный пример того, как чистая математика превращается в прикладную. В числе прочих занятных способов применения этого закона – выявление подделки и фабрикации данных в бухгалтерии и при уклонении от налогов. Данные из самых разных финансовых документов всегда очень хорошо соответствуют закону Бенфорда. А сфабрикованные данные – очень редко. Хилл доказал, как работает этот метод выявления мошенничества, на одном простом примере при помощи теории вероятности. На первом занятии своего курса по теории вероятностей Хилл просит студентов провести эксперимент. Если девичья фамилия их матери начинается с букв от А до L , они должны подбросить монетку 200 раз и записать результат – сколько было орлов и сколько решек. Остальным студентам предлагается подделать результат 200 бросков монетки, то есть создать случайную последовательность орлов и решек. На следующем занятии Хилл собирает результаты и очень быстро определяет, где результат подлинный, а где поддельный, и в 95 % случаев не ошибается. Как ему это удается? В любой последовательности из 200 бросков монетки, если ее действительно бросали, с большой вероятностью попадается по шесть орлов или шесть решек подряд. А когда кто-то пытается подделать последовательность из 200 бросков монетки, им кажется, что такого уж точно не может быть.
Недавно закон Бенфорда применили для выявления финансовых махинаций в одном американском туристическом бюро. Директор по аудиту обнаружил что-то странное в отчете начальника отдела медицинского страхования компании. Первые две цифры в суммах выплат на медицинскую страховку, когда эти данные проверили на соответствие закону Бенфорда, почему-то тяготели к 65 (более подробно о том, как закон предсказывает и вторую и далее цифры, см. в Приложении 9). Тщательный аудит выявил тринадцать поддельных чеков на суммы от 6500 до 6599 долларов. В управлении окружного прокурора в нью-йоркском районе Бруклин при помощи проверок на основе закона Бенфорда также выявили бухгалтерские подделки в семи нью-йоркских фирмах.
Закон Бенфорда состоит именно из тех ингредиентов, которые так по вкусу большинству математиков. Он отражает простой, но поразительный факт: распределение цифр на первом месте в числе подчиняется вполне конкретной закономерности. Более того, этот факт еще и трудно объяснить. Но иногда числа приносят радость, которой не приходится долго ждать. Например, многие математики, как любители, так и профессионалы, очень увлекаются простыми числами. Почему же простые числа так важны? Потому что «Фундаментальная теорема арифметики» гласит, что любое целое число больше единицы можно выразить произведением простых чисел (обратите внимание, что 1 считается простым числом). Например, 28 = 2 × 2 × 7, а 66 = 2 × 3 × 11 и т. д. Простые числа так глубоко укоренились в человеческом понимании математики, что Карл Саган (1934–1996) в своей книге «Космос», когда ему надо было описать, какого типа сигнал разумная цивилизация передала бы в космос, избрал для этого, в частности, последовательность простых чисел: «Крайне маловероятно, чтобы какой-нибудь естественный физический процесс генерировал радиосообщение, содержащее только простые числа. Получив подобное сообщение, мы можем заключить, что где-то есть цивилизация, которая любит простые числа» ( пер. А. Сергеева ). Великий Евклид более двух тысяч лет назад доказал, что простых чисел существует бесконечно много (это изящное доказательство приведено в Приложении 10). Однако большинство любителей простых чисел согласны, что среди них попадаются особенно интересные. Некоторые математики, например, француз Франсуа Ле Лионне и американец Крис Колдуэлл, вели списки «примечательных» или «титанических» чисел. Приведу несколько занятных примеров из великой сокровищницы простых чисел.
– Число 1 234 567 891, представляющее собой «цикл» всех цифр, – тоже простое число.
– 230-е простое число, в котором 6400 цифр, состоит из 6399 девяток и всего одной восьмерки.
– Число, состоящее из 317 повторений цифры 1, простое.
– 713-е простое число можно записать как 10 1951 × (10 1975 + 1991991991991991991991991) + 1, и открыли его – вы угадали – в 1991 году.
В контексте этой книги особенно интересно проследить связь между простыми числами и числами Фибоначчи. Все простые числа в последовательности Фибоначчи, кроме 3, стоят в ряду на местах, чей номер – тоже простое число. Например, число Фибоначчи 213 – простое число и в последовательности занимает тринадцатое место – тоже простое число. А вот обратное неверно: если номер числа в последовательности Фибоначчи – простое число, само оно не обязательно простое. Например, 19 член последовательности (19 – простое число) – это число 4181, а 4181 не простое число, оно равно 113 × 37.
Читать дальше
Конец ознакомительного отрывка
Купить книгу