А вдруг никакие методы выявления не дадут похожих результатов, и общая уверенность у меня окажется низкой? В таком случае мне придется задуматься о том, что либо неверны какие-то подробности моей изначальной гипотезы, либо чеширских котов не бывает.
В некотором смысле теорема Байеса – довольно простая математическая концепция, однако просто поразительно, как далеко может завести ее применение. Для многих ученых ее действенность в определении контуров реальности служит доказательством, что байесовский метод предельно близок к тому, «как устроена природа» – похоже, она позволяет точно предсказать вероятностный результат самых разных явлений, которые, в сущности, определяются не законами, а случайностью. Все дело в том, что даже если природа знает, какие законы действуют в ситуации, когда мы применяем этот метод, мы можем лишь догадываться об этом.
Чаще всего это не имеет особого значения. Если наши догадки – наша научная модель – достаточно точна, то теорема Байеса, словно по волшебству, сгладит все неровности, или по крайней мере даст нам понять, насколько мы можем быть уверены в полученных результатах. Правда, у некоторых ученых такой метод делать выводы об устройстве Вселенной по-прежнему вызывает раздражение, ведь получается, что не бывает по-настоящему ошибочных теорий, просто одни хуже, а другие лучше.
Прекрасно помню, как на старших курсах наблюдал жаркие споры маститых ученых, которые чуть ли не в драку лезли, пытаясь разобраться, можем ли мы позволить себе подобную мягкотелость [177] Спорщики раскалывались на два лагеря – так называемых фреквентистов и байесианцев. Фреквентист толкует происходящее на основе результата измерений и, как правило, предполагает, что существуют постоянные фундаментальные параметры, которым нельзя приписывать вероятность. Например, если эксперимент приводит к определенному результату в 95 случаях из 100, фреквентист скажет, что к тому же результату приведут и 95 % дальнейших экспериментов, и не добавит, что это произойдет с той или иной вероятностью.
. Если байесовский анализ дает нам лишь вероятность, что та или иная теория хорошо совпадает с наблюдениями, нельзя же полностью доверять этому методу, когда требуется точное знание! Такие же дискуссии велись и по поводу обратной аргументации: ведь это куда более честный и реалистический подход к структурированию наших исследований мира природы, поскольку он полон неопределенностей и незавершенных историй. Однако, как и при решении многих других задач в человеческой жизни, можно сказать, что если что-то работает без сбоев и дает приемлемое, пусть и не совершенное, решение какой-то задачи, именно оно и становится решением де-факто, а в таких случаях, конечно, нет ничего лучше теоремы Байеса.
* * *
В наши дни байесовский метод вездесущ, он внедрен в нашу технологию и мышление. Он окружает нас повсюду, даже там, где не ожидаешь. Например, он заложен практически в любое программное обеспечение для обработки фотографий. Распознавание лиц? Да, оно основано на байесовской вероятности, именно она обеспечивает, чтобы в фокус попали драгоценные мгновения детских игр. Обидный штраф, который вы получили за то, что пытались проскочить на красный? Скажите спасибо Томасу Байесу: номер вашей машины распознали на размытом фото при помощи байесовских приемов. Автокоррекция текста, которая подсказывает вам безумно смешные варианты, когда вы набираете сообщение на телефоне? Да, и здесь тоже применяется теорема Байеса – статистический анализ использования слов генерирует вероятности того, что вы собираетесь напечатать или имели в виду. Биржевые роботы, торгующие акциями и определяющие курсы валют, почти всегда делают это на основе байесовских методов определения вероятностей и уверенности в результатах. В нашу эпоху Больших Массивов Данных, когда компании собирают информацию обо всех мельчайших особенностях поведения потребителей, все те же инструменты статистической оценки и прогноза обеспечивают им подсказку, какую марку мыла мы предпочитаем – или какую марку мыла нас уговорят полюбить.
* * *
Без мощного влияния наследия Байеса в науке мы не смогли бы понять, что говорит нам о вероятности существования жизни во Вселенной тот простой факт, что существуем мы сами. Да, именно теорема Байеса помогает нам расшифровать генетический код и оценить результат анализа на онкомаркеры, чтобы понять, с какой вероятностью мы можем заболеть раком. Она позволяет нам лавировать среди петабайтов данных и найти там эфемерные признаки новых элементарных частиц и новых законов физики. Но еще она помогает нам найти ответ на животрепещущий вопрос, какие выводы можно сделать из нашего существования о вероятности зарождения жизни в Галактике, которая состоит из миллиардов других солнечных систем. Итак, теперь, когда мы думаем над нашим вопросом подобно Томасу Байесу, давайте посмотрим, что будет, если мы попробуем сформулировать математический ответ на вопрос о жизни во Вселенной.
Читать дальше
Конец ознакомительного отрывка
Купить книгу