То, что космос должен быть именно таким, – вовсе не данность. Планет могло быть очень мало – и мы все равно существовали бы на одинокой Земле и задавались бы тем же вопросом, просто так и остались бы навеки без ответа. А открытие такого количества планет возвращает нас к идее, о которой я писал в самом начале книги, – к антропному принципу. Возможно, читатель отметит, что Вселенная не просто настроена так, что жизнь может возникнуть в ней по крайней мере однажды, – похоже, она настроена так, чтобы жизнь заинтересовалась своим происхождением и вероятностью абиогенеза.
Мы не знаем в точности, какие из этого можно сделать выводы, по крайней мере, пока. Но это очень интересно – тут сомневаться не приходится; и еще нам определенно нужно будет пересмотреть свои воззрения по мере того как мы углубимся в дальнейшие исследования, не только в пространстве, но и во времени.
Чтобы примириться с идеей Вселенной, полной планет, нам пришлось выйти далеко за пределы привычных рамок. Мы были вынуждены пересмотреть самые разные древние фантазии о неведомых мирах. Как я уже показал, нам пришлось исправлять собственные ошибки, перестать считать, что наша Солнечная система – характерный представитель себе подобных.
Если бы обнаружить даже самые близкие экзопланеты не было так технически сложно, мы бы добрались до этого этапа гораздо раньше, а так при попытках приглядеться к этим тусклым искоркам вокруг сияющих звезд нас ждет множество неожиданностей. Казалось бы, изобилие планет подтверждает наши коперниковские идеи, однако их разнообразие сильно смазывает картину. Судя по некоторым признакам, мы обитаем в несколько необычном месте, и в этом таится намек на то, что нам нужно расширить понятие тонкой настройки Вселенной. Однако на этом история не кончается. Дело в том, что лига выдающихся планет отражает лишь сиюминутный срез истории наших космических соседок. Когда мы сравниваем их с нашей Солнечной системой, то основываемся зачастую на простом наборе параметров, зафиксированных во времени. Между тем сегодняшние условия отражают лишь миг в истории, насчитывающей 4,5 миллиарда лет прошлого и 5 миллиардов лет будущего нашего Солнца и его планет. Так есть ли смысл основывать все свои выводы на таких узких представлениях? Был бы, если бы системы планет были как заводные – бессмертные, неизменные и предсказуемые. Но ведь это не так. Поэтому в следующей главе я открою одну грязную тайну небесной механики, которую тщательнее всего хранят, поскольку она объясняет, почему мы в своем уравнении значимости должны обязательно учитывать ход времени и вероятность перемен.
Cтоял 1889 год, Анри Пуанкаре [114] Анри Пуанкаре (1854–1912) был не просто математик, он добивался блестящих результатов практически во всем, за что брался, в том числе в физике и в инженерном деле. Большинство источников отмечают, что он был склонен работать быстро и не очень любил вносить изменения и исправления в уже сделанное.
сравнялось тридцать четыре года, и он был в расцвете творческих сил. Молодой муж и отец, подающий надежды преподаватель в Парижском университете, недавно избранный в престижную Французскую Академию наук, он всего несколько месяцев назад выдвинул гипотезу, которая произвела фурор на торжественном конкурсе: судя по всему, Пуанкаре дал ответ на одну из самых наболевших и трудных задач во всей математической физике. Все в жизни складывалось лучше некуда.
Нам это может показаться немного странным (хотя эта традиция при подходе к самым знаменитым задачам еще сохранилась), однако в конце XIX века нерешенные математические задачи частенько выставляли на конкурсы. Однако здесь был особый случай: патронировал конкурс его величество Оскар II, король Норвегии и Швеции. Мало того, что король Оскар II изучал математику в Упсале, он еще и сохранил тесные связи с академическим миром. Особенно он интересовался недавно основанным журналом «Acta Mathematica» [115] Этот журнал процветает до сих пор, его издает Институт Миттаг-Леффлер (названный в честь супругов Густава и Сигне Миттаг-Леффлер) при Шведской королевской академии наук.
, который печатался в Стокгольмском университете (тогда он еще назывался Стокгольмским колледжем). Так что долго ждать не пришлось: кому-то пришла в голову блестящая идея объявить конкурс, которому покровительствовал сам король и результаты которого предстояло опубликовать в этом журнале. О конкурсе объявили в 1885 году и выбрали жюри, состоявшее из самых блестящих математиков Европы и Америки. Участники состязаний должны были дать ответы на четыре знаменитые математические задачи по выбору жюри, однако могли выдвинуть и собственную тему. Эффектным завершающим штрихом было то, что итоги конкурса и вручение призов в начале 1889 года были приурочены к шестидесятилетию Оскара II.
Читать дальше
Конец ознакомительного отрывка
Купить книгу