Python molurus bivittatus . Естественный ареал этой змеи – Южная и Юго-Восточная Азия.
Pittman, S. E., Hart, K. M., Cherkiss, M. S., Snow, R. W., Fujisaki, I., Smith, B. J., … & Dorcas, M. E. (2014). Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes’, Biology Letters, 10 (3), 20140040.
Гренландское название – Уманарссуак.
В специальной литературе эти типы навигации называют, соответственно, «аллоцентрическим» и «эгоцентрическим».
Иногда ее также называют «истинной навигацией».
Двух сигналов было бы недостаточно, так как соответствующие им окружности могут пересекаться в двух точках, что порождает неоднозначность.
В этой работе Пердек изучал обыкновенных скворцов ( Sturnus vulgaris ) и зябликов ( Fringilla coelebs ).
Perdeck, A. C. (1958). ‘Two Types of Orientation in Migrating Starlings, Sturnus vulgaris L., and Chaffinches, Fringilla coelebs L., as Revealed by Displacement Experiments’, Ardea, 46 (1–2). P. 1, 2.
Schmidt-Koenig, K., & Schlichte, H. J. (1972). ‘Homing in pigeons with impaired vision’, Proceedings of the National Academy of Sciences, 69 (9). P. 2446–2447; и Schmidt-Koenig, K., & Walcott, C. (1978). ‘Tracks of pigeons homing with frosted lenses’, Animal Behaviour, 8 (26). P. 480–486.
Walcott, C., & Schmidt-Koenig, K. (1973). ‘The effect on pigeon homing of anesthesia during displacement’, The Auk3, 90. P. 281–286.
Wallraff, H. G. (2013). ‘Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results’, Biogeosciences, 10 (11). P. 6929–6943.
Wallraff, H. (2005). ‘Beyond familiar landmarks and integrated routes: goal-oriented navigation by birds’, Connection Science, 17 (1–2). P. 91–106.
Boström, J. E., Åkesson, S., & Alerstam, T. (2012). ‘Where on earth can animals use a geomagnetic bi-coordinate map for navigation?’, Ecography, 35 (11). P. 1039–1047.
Более подробное обсуждение см.: Mouritsen, H. (2013). ‘The Magnetic Senses’, in: C. G. Galizia, P.-M. Lledo (eds.), Neurosciences – From Molecule to Behavior: A University Textbook, DOI 10.1007/978–3–642–10769–6_20. P. 427–443.
Muheim, R. (2011). ‘Behavioural and physiological mechanisms of polarized light sensitivity in birds’, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366 (1565). P. 763–771.
Waterman, T. H. (2006). ‘Reviving a neglected celestial underwater polarization compass for aquatic animals’, Biological Reviews, 81 (1). P. 111–115.
Powell, S. B., Garnett, R., Marshall, J., Rizk, C., & Gruev, V. (2018). ‘Bioinspired polarization vision enables underwater geolocalization’, Science Advances, 4 (4), eaao6841.
Они же ротоногие ( Stomatopoda ), отряд ракообразных.
Thorup, K., Bisson, I.-A., Bowlin, M. S., Holland, R. A., Wingfield, J. C., Ramenofsky, M., & Wikelski, M. (2007). ‘Evidence for a navigational map stretching across the continental U.S. in a migratory songbird’, Proc. Natl. Acad. Sci. USA, 104. P. 18115–18119.
Zonotrichia leucophrys – птица семейства овсянковых, обитающая в Канаде и США.
Acrocephalus scirpaceus.
Chernetsov, N., Kishkinev, D., & Mouritsen, H. (2008). ‘A long-distance avian migrant compensates for longitudinal displacement during spring migration’, Current Biology, 18 (3). P. 188–190.
Piggins, H. D., & Loudon, A. (2005). ‘Circadian biology: clocks within clocks’, Current Biology, 15 (12), R 455–R 457.
Kishkinev, D., Chernetsov, N., & Mouritsen, H. (2010). ‘A Double-Clock or Jetlag Mechanism is Unlikely to be Involved in Detection of East—West Displacements in a Long-Distance Avian Migrant’, The Auk, 127 (4). P. 773–780.
Kishkinev, D., Chernetsov, N., Pakhomov, A., Heyers, D., & Mouritsen, H. (2015). ‘Eurasian reed warblers compensate for virtual magnetic displacement’, Current Biology, 25 (19), R 822–R 824.
Kishkinev, D., Chernetsov, N., Heyers, D., & Mouritsen, H. (2013). ‘Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement’, PLoS One, 8 (6), e65847.
Chernetsov, N., Pakhomov, A., Kobylkov, D., Kishkinev, D., Holland, R. A., & Mouritsen, H. (2017). ‘Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem,’ Current Biology, 27 (17). P. 2647–2651.
Quinn, T. P., and Brannon, E. L. (1982). ‘The use of celestial and magnetic cues by orienting sockeye salmon smolts’, J. Comp. Physiol., 147. P. 547–552.
Oncorhynchus nerka.
Putman, N. F., Lohmann, K. J., Putman, E. M., Quinn, T. P., Klimley, A. P., & Noakes, D. L. (2013). ‘Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon’, Current Biology, 23 (4). P. 312–316.
Putman, N. F., Scanlan, M. M., Billman, E. J., O’Neil, J. P., Couture, R. B., Quinn, T. P., … & Noakes, D. L. (2014). ‘An inherited magnetic map guides ocean navigation in juvenile Pacific salmon’, Current Biology, 24 (4). P. 446–450.
Capreolus capreolus.
Obleser, P., Hart, V., Malkemper, E. P., Begall, S., Holá, M., Painter, M. S., … & Burda, H. (2016). ‘Compass-controlled escape behavior in roe deer’, Behavioral Ecology and Sociobiology, 70 (8). P. 1345–1355.
Chelonia mydas.
Carr, A. F., The Sea Turtle (University of Texas, 1986). P. 26, 27.
Здесь и далее цит. по изд.: Карр А. В океане без компаса / Пер. с англ. И. Гуровой. М.: Мир, 1971.
Ibid. P. 159.
Ibid. P. 163–165.
Ракообразные семейства Alpheidae .
Papi, F., Liew, H. C., Luschi, P., & Chan, E. H. (1995). ‘Long-range migratory travel of a green turtle tracked by satellite: evidence for navigational ability in the open sea’, Marine Biology, 12 (2). P. 171–175.
Читать дальше