Ответ и решение:
Квадраты. У квадратов по четыре угла. Каждый угол направлен своей энергетической силой во все возможные стороны. Всепричинность как понятие о прошлом, настоящем и будущем также в этих предметах прообразует их новые конфигурации в бытии фрагментации. Это неподвластная нам тема. Нам же подвластно решить взаимодействие квадратов на окружающую природу. А оно таково, что они излучают всеми своими четырьмя поверхностями энергию во всех возможных направлениях, одновременно считывая информацию с природы и с человека (ов), если они там находятся.
Квадрат по отношению к квадрату излучает комбинации поверхностей 1—1, 2—2, 3—3, 4—4. Сами поверхности не ровные, так как в природе нет ничего ровного и абсолютно точного и потому они могу излучать следующие комбинации: 0,5- 0,5 или 1,3—1,4, 2—0,1, 3—1,5, 4- (-3). Конфигурации и вариации самые разнообразные и полностью вычислить объём комбинаций даже в обычных квадратов средней лабораторной величины невероятно сложно, а точнее очень трудоёмкая работа.
Но выясняется интересная деталь, излучение стороны квадрата, которую мы берём за фиксированную величину есть излучение положительного вектора 4 на вектор -3. Как такое возможно? (это одна из вариаций, обозначенных мной) Получается, что отрицательное излучение, которое есть внутреннее излучение стороны квадрата неполная картина математического взаимодействия, а лишь раскрытие подробности излучений. То есть правильная формула должна выглядеть так: 4—4 (-3), а ещё более правильно (-3) -4-4- (-3), но это симметричная формула, а на самом деле здесь также бесчисленные вариации цифрового прообразования.
Но нам нужно выяснить: а что если детально просчитать максимально большое количество вариаций излучений? (только точнее не «энергии», а «потока измерения» (пизма). Получится результат, который позволит говорить о множественности структур мира как внешних так и внутренних, это будет фактологической стороной. И также практический момент-сторона – это перспектива нащупывания в пространстве стыков, уплотнений и наложений равнонаправленных и тождественных величин с целью «прогибать» математическое бытие и совершать движение в этом уплотнении с помощью теории вычисления и практики механистического применения оборудования (машин) для передвижения в бытии. Под бытием обозначим математические вогуности и прогибы. Внешний порядок дел благодаря внутренним вычислениям. В этом пионерство математического прообразования.
Но ещё в задаче у нас сказано о диске и треугольнике. Дело в том, что здесь ещё легче нащупать взаимодействия, так называемые стыки и уплотнения, потому что пизма здесь не симметричная, а стремится к разностям значений, а значит уплотнения будут на стыках очень очевидны.
Примерно это можно в цифровом виде изобразить так: 1, 2, 3, 4, 5, 6+∞ → 1, 2, 3, 4 (диск-треугольник) и в итоге стыки. Но значения также зависят от формы и местоположения, разворота и состояния покоя или движения предметов, их нахождения в помещении или на природе, всё это даёт пизмы и также образует стыки, на которых может прогибаться математическое бытие и осуществляться движение.
В обычных же условиях пизмы практически не ощущаются нами, но при конструктивных научных взаимодействиях они будут являть уплотнения и тем самым давать альтернативные источники движения и горючего, потому что пизмы не только дают способность двигаться, но при правильно обозначенных математических конфигурациях ещё это движение и осуществляют.
Но нужно разобраться ещё по крайней мере в двух вещах (Примечание)
Что такое Всепричинность в данных конфигурациях пизм?
Каков наиболее просто общий знаменатель взаимодействий пизм?
1.Всепричинность в данных вычислениях может использоваться, а может и не использоваться. Без неё можно обойтись, но в то же время если её использовать, то это может дать результаты для установления телепортации, потому что в теории и практике Прообраза время находится и предугадывается в одной точке существования и в то же время само движение пизм внутри тела может придать ему движение без изменения внешнего природного, с помощью также стыков внутри тела и возможно наложений пизм.
2. Общий знаменатель может быть найден, но это требует как раз вычислений огромного числа математиков. Сейчас же можно сказать, что математические тождества – это ориентир к нахождению физических уплотнений пизм, а также геометрические вариации уплотнений естественного характера и искусственным путём может дать результат в пизмах.
Читать дальше