Новая таблица умножения
Мною изобретена новая таблица умножения. Говорить об этом я могу в своей теории чисел исходя из того, что в природе нет ничего начинающегося и заканчивающегося, а всегда присутствует процесс. Поэтому любое число – это процесс, а не конечный результат.
Возьмём число 1 и разложим его. 1 – это 0 (то, что предшествует) и 2 (то, что последует). Поэтому 1 – это и 0, и 2, и одновременно 0, 2 и 1. Причём именно на одну единицу мы добавляем и прибавляем после числа, потому что единица – это мера минимального целого числового дискретного дифференцирования.
Также с каждым числом. Причём умножение будет строиться на основании умножения такого типа 2*2= 2 (1;3) *2 (1;3) = (1*1) * (3*3) =1*9=9. То есть умножение данного вида есть умножение подчисел, а значит самого подробного описания числа. Таким образом получается, что 2*2=9.
Какой философский смысл мы можем извлечь из данного решения? Очевидно, что 2*2=4 по сравнению с 2*2=9 стоит в отношении ½+1 (когда речь о 2 в 2*2=4), поэтому любое математическое утверждение – это примерно половина истины, если брать данный пример.
Когда мы говорим о человеке, то речь идёт о том, что любая деятельность организма – это то, что происходит и то, что стоит за данным, и подчисло деятельности по функции и значению намного больше. Поэтому глубинная анатомия и физиология человека и животных, а также физика и химия природы намного сложнее, глубже, интересней, чем то, с чем мы имеем дело на поверхности процесса.
Но будет ли правильным оба утверждения: и 2*2=4 и 2*2=9? Я полагаю, что это будет два правильных решения, но первое неполное, а второе полное и как это ни парадоксально, второе также для практики будет феноменально важным.
Если мы возьмём две коробки с печеньем и умножим их на другие две коробки с печеньем, то получим четыре коробки, но то, что предшествует каждой коробке – это набор коробки печеньем, то есть 1 и реализация печенья в потреблении магазинами и людьми, то есть 2, и потому полное решение будет именно 9, если перемножить все функции коробок.
Мною проделана работа по созданию всей таблицы умножения, введению в оборот всех чисел, которые получаются, когда мы умножаем все подчисла всех чисел.
Но есть ещё один очень интересный момент, который заключается в том, что 1-2-3-4-5-6-7-8-9- (1—0) – это десятичная созданная людьми система счисления, а может быть другая система счисления, где на 10 не заканчивается числовой целочисленный ряд.
Это может быть, например, 1-2-3-4-5-6-7-8-9-в-р-1в-2р-3в-4р-5в-6р-7в-8р-9в-вр-в1-р2-в3-р4-в5-р6-в7-р8-в9-рв….и так далее.
В этом направлении надо продолжать работать. Эту систему счисления я предложил как альтернативу, но может быть ещё система счисления, в которой ещё что-то другое, и это будет давать нам совершенно другой взгляд на мир и на вещи.
Получается, что число – это ещё и универсальный не инвариант, то есть не постоянное значение и только фиксируемая величина. Если предположить, что мы живём в мире не десятичного счисления, а цифро-буквенного перебора, как предложил я, то это повлияет и на изучение циклов Земли (астрономия), и на изучение мозга (искусственного интеллекта в частности), и на изучение самой математики, и что самое главное техники, технологий и изобретательства.
Философски значимо здесь то, что может быть иное в математической топологии, которую ввёл Пуанкаре и неоднозначность смыслов.
Математика создаёт что-то для того, чтобы больше познавать мир. Если мы говорим, что математика – это точная наука, то мы говорим правду, но только с той оговоркой, что это наука и потому точные вычисления расширяются, увеличиваются, их много и они постоянно должны аккумулироваться нашими усилиями.
Я убеждён на основании научных изысканий, что наш мозг работает по математическим и геометрическим стратегиям и потому вся математика в нём, и все принципы дифференцирования, к примеру, в геометрии, конечно, а не числе, в веществе гармонично отражены, поэтому любое математическое понятие может быть гуманитарным языком описано, как смысл.
МАТЕМАТИКА и ГЕОМЕТРИЯ прообразования
Задача 1 Обнаружение уплотнений, как они возможны?
Решим такую задачу: дано 2 физических объекта разной формы и два физических объекта одинаковой формы, это диск и треугольник и два квадрата. Нужно вычислить с точки зрения прообразовательной математики как эти объекты влияют друг на друга при нахождении на равном друг от друга расстоянии. Для решения задачи можно применять любые способы и методики вычисления, но пользуясь понятийным языком Прообраза.
Читать дальше