Л. — Сделаем небольшой опыт. Возьмем этот кусок бумаги и проделаем в нем небольшое круглое отверстие таких же размеров, как и элемент изображения. Я заставляю медленно скользить мою бумажку по черным и белым полоскам, составляющим наше изображение.
Н. — Ты, значит, производишь анализ изображения так же, как это производится в телевидении.
Л. — Ну да. Говорят также разложение или развертывание изображения. Ты видишь (рис. 4), что в некоторые моменты отверстие находится целиком либо на черной, либо на белой полоске. Но перемещение из одного положения в другое происходит отнюдь не мгновенно. Мы проходим через все промежуточные положения, когда большая или меньшая часть развертываемого элемента черная, тогда как другая часть — белая. Отодвинься настолько от бумажки, чтобы ты не мог больше различать двух частей элемента изображения, ограниченных отверстием.
Рис. 4. Формирование одного периода видеочастоты (нижняя часть рисунка) для нескольких последовательных фаз разложения изображения (верхняя часть рисунка).
Н. — Ты, конечно, хочешь, чтобы я оказался в условиях, точно соответствующих определению элемента изображения, которое я только что дал: площадка достаточна малая, чтобы глаз не различал никаких деталей в ее пределах?
Л. — Ну, конечно. А вот теперь, когда отверстие медленно перемещается, что ты видишь?
Н. — Я различаю только средний тон того, что видно через отверстие. В соответствии с соотношением черного и белого я вижу более или менее темную серую поверхность. А когда ты передвигаешь бумажку, поверхность в пределах отверстия изменяется от черного до темно-серого цвета, который быстро светлеет и становится белым, затем снова темнеет и становится черным. Затем все повторяется.
Л. — Отгадай, каков же характер напряжения, которое должно передать эти изменения средней яркости?
Н. — Уверен, что мы вышли из трудного положения: я хочу сказать, что мы опять вернулись к нашей доброй старушке синусоиде.
НЕМНОГО АЛГЕБРЫ
Л. — Попытаемся теперь подсчитать максимальную частоту, которую может иметь эта синусоида. Посмотрим сначала, на сколько элементов разбито изображение. Допустим, что его высота Ни ширина L(рис. 5). Она развертывается с помощью Nгоризонтальных линий (строк), причем в секунду передается nцелых изображений.
Рис. 5. Относительные размеры растра.
Н. — Все это как будто попахивает алгебраической задачей…
Л. — Тем хуже для тебя, если это так… Предположим, что элемент изображения квадратный, т. е. что четкость передачи одинакова в вертикальном и горизонтальном направлениях. В этом случае высота квадрата равна общей высоте H, разделенной на число строк N, т. е. равна H/ N, и в каждой строке длиной Lсодержится L:( H/ N) = L· N/ Hэлементов.
Поскольку всего Nстрок, изображение будет разложено на
( L· N/ H)· N= L· N 2/ H элементов.
Н. — До сих пор мне все кажется логичным.
Л. — Так оно будет н дальше. Все элементы, составляющие изображение, передаются nраз в секунду, что дает L· N 2· n/ Hэлементов в секунду. Но так как одного периода достаточно для передачи двух элементов изображения, то для передачи всех элементов потребуется вдвое меньше периодов, т. е. L· N 2· n/2 Hгц.
Эта формула не абсолютно точна, так как она не учитывает потери времени на сигналы синхронизации, о которых мы будем говорить в другой раз. Но в данный момент этого вполне достаточно, чтобы определить максимальную видеочастоту.
Читать дальше