Л. — Это условие «оптической видимости» желательно, но не обязательно. Метровые волны все же не обладают строгой прямолинейностью световых лучей и могут огибать небольшие препятствия. Кроме того, не забудь, что диэлектрики не препятствуют распространению электромагнитных волн. Но земной шар должен рассматриваться как проводник и на этом основании…
Н. — Подожди. Мне кажется, я понимаю. Очевидно, Земля является препятствием для волн. А так как Земля круглая, то за пределами некоторого расстояния от передатчика (рис. 1) ее кривизна скрывает от нас передающую антенну. Волны проходят над головой, все более удаляясь от Земли, и теряются в верхних слоях атмосферы.
Рис. 1. Дальность действия передатчика метровых волн ограничена зоной видимого горизонта.
Л. — Действительно, ты прекрасно схватил то, что можно назвать трагедией телевидения.
Н. — Почему «трагедией»?
Л. — Потому что из-за незначительной дальности действия передатчиков необходимо устанавливать их в большом количестве для покрытия всей территории страны, а это стоит очень дорого. Правда, в настоящее время открывается возможность практически неограниченно увеличить дальность телевизионных передач с помощью искусственных спутников Земли.
НЕЗНАЙКИН МЕТИТ ОЧЕНЬ ВЫСОКО
Н. — Должно же все-таки существовать какое-то средство, помогающее в этом трудном положении! Может быть, можно ловить волны, бесполезно проходящие над головами людей на слишком большом удалении от передатчика, с помощью очень высоких антенн, поднятых на воздушных змеях или аэростатах.
Л. — Дело до этого не доходит. Но стараются использовать антенны, расположенные как можно выше. Поэтому всегда выгодно располагать передающую антенну в самом высоком пункте какого-либо района. Вот почему парижская передающая антенна помещена на верхушке Эйфелевой башни.
Н. — Действительно, таким образом можно получить большую дальность действия. Но почему же не пойти дальше по такому верному пути?
Л. — Что ты хочешь этим сказать?
Н. — Можно было бы производить передачи с большой высоты: достаточно было бы поместить передатчик на самолет. Передвигаясь в стратосфере, он мог бы облучать всю Францию метровыми волнами… к величайшей радости дядюшки Жюля…
Л. — Поздравляю с прекрасной идеей! Но техники предусмотрели эту возможность гораздо раньше тебя. Одно время было много шума вокруг стратосферных телевизионных передач. Однако их практическое использование оказалось очень трудным.
НЕЗНАЙКИН РАЗДОСАДОВАН
Н. — Но в конце концов почему мы вынуждены осуществлять телевидение на метровых волнах? Не потому ли, что, появившись последним, оно было помещено на задворках длин волн? Разве нельзя было, отделавшись от трех или четырех радиовещательных передатчиков, отвести телевидению подходящее место в диапазоне коротких или длинных волн? Я прекрасно знаю, с какой остротой оспаривают распределение свободных частот. Но пойми, что на одной волне между 200 и 600 м достаточно мощный передатчик обслуживал бы большую часть страны…
Л. — Ты частенько допускаешь ошибки, мой дорогой. Но никогда не изрекал ты такой несусветной чепухи! Допустить, что телевидение уместилось бы в диапазоне волн длиннее 200 м, это все равно, что заставить слона войти в раковину улитки.
Н. — То, что ты говоришь, вероятно, весьма остроумно. Но я смиренно сознаюсь, что не вижу связи между телевидением и слоном.
Л. — Не сердись… Ты лучше поймешь правильность моего сравнения, если рассмотришь свойства сигнала, используемого для передачи изображения. Ты увидишь тогда, насколько он отличается от низкочастотных сигналов, которые позволяют передавать с помощью электрического тока звук, попадающий на микрофон радиовещательного передатчика. Ты помнишь границы его частот?
Н. — Прекрасно помню. Самый низкий тон имеет 16 гц. Наиболее высокий, еще различаемый ухом, имеет 20 000 гц. Не практически диапазон частот, передаваемых обычными радиовещательными передатчиками, ограничивается частотой 4 500 гц.
Читать дальше