В заключенииприведены рекомендации по отработке навыков изобретательского мышления.
В приложенияхпредставлен разбор задач и таблицы применения стандартов.
Учебник написан в той последовательности, в которой рекомендуется осваивать его.
Теоретическая часть иллюстрируется большим количеством примеров, задач и графического материала (более 200 примеров и задач и около 150 иллюстраций).
Книга предназначена для широкой публики. Она также может быть полезна студентам, аспирантам, преподавателям университетов, инженерам, изобретателям, ученым и людям, решающим творческие задачи.
Желаю успехов, ДОРОГОЙ ЧИТАТЕЛЬ!
Глава 1. Краткие сведения о законах развития систем и вепольном анализе
1.1. Представления о законах развития систем
При создании системы стандартов на решение изобретательских задач Г. С. Альтшуллер использовал только некоторые законы из группы эволюции систем. Детально законы развития систем изложены в монографии 3 3 Петров Владимир. Законы развития систем: ТРИЗ / Владимир Петров. [б. м.]: Издательские решения, 2018. – 894 с. – ISBN 978-5-4490-9985-3 (элктронная книга).
.
Мы кратко опишем только те законы и закономерности, которые использовались при разработке системы законов.
Основные из законов эволюции системследующие (рис. 1.1):
– закон увеличения степени идеальности;
– закон увеличения степени управляемости и динамичности;
– закон перехода в надсистему;
– закон перехода на микроуровень;
– закон свертывания;
– закон согласования;
– закон сбалансированного развития систем.
Рис. 1.1. Структура законов эволюции систем
Из указанных законов для создания стандартов Г. С. Альтшуллер использовал только законы увеличения степени управляемости и динамичности, перехода в надсистему и на микроуровень, да и то не в полном объеме.
Закон увеличения степени управляемости и динамичности имеет подзакон – закон изменения степени вепольности и закономерность изменения управляемости веществом, энергией и информацией (рис. 1.2).
Рис. 1.2. Структура закона увеличения степени управляемости и динамичности
Закон увеличения степени вепольности будет изложен в п. 1.2.
Закономерность изменения управляемости веществом, энергией и информацией подразделяется на закономерности (рис. 1.3):
– Изменения управляемости веществом;
– Изменения управляемости энергией и информацией.
Рис. 1.3. Закономерность увеличения степени управляемости и динамичности
В свою очередь, закономерность увеличения степени управляемости веществом осуществляется (рис. 1.4):
– использованием «умных» веществ;
– увеличением концентрации вещества;
– увеличением количества степеней свободы;
– увеличением степени дробления;
– переходом к капиллярно-пористым материалам (КПМ).
Рис. 1.4. Закономерность увеличения степени управляемости веществом
Из этих закономерностей Альтшуллером были использованы увеличение степени дробления и переход к КПМ. В упрощенном виде опишем их ниже.
Увеличение степени управляемости энергией и информацией осуществляется (рис. 1.5):
– изменением концентрации энергии и информации;
– переходом к более управляемым полям.
Переходу к более управляемым полям выполняется:
– Заменой виде поля;
– Переходом МОНО-БИ-ПОЛИ полям;
– Динамизацией полей.
Рис. 1.5. Закономерность увеличения степени управляемости энергией и информацией
Из этих закономерностей для создания стандартов была использована только закономерность перехода к более управляемым полям.
В данной книге она будет дана в очень упрощенном виде.
Читать дальше