Наибольшие трудности возникают при выборе материала анода . Выбор анодных материалов ограничен высокой коррозионной активностью среды. Лучшими анодами являются аноды из платины или ее сплавов, но стоимость их высока. В хлорном производстве платиновые аноды были заменены на графитовые. Эти электроды достаточно быстро изнашиваются, их замена вызывает перерывы производственного цикла и требует дополнительные затраты.
Продукты коррозии электродов загрязняют электролит и получаемые продукты. В связи с этим к электродным материалам предъявляется и требование: они должны иметь малую скорость саморастворения и практически не растворяться при прекращении электролиза. Полностью нерастворимых анодов нет и каждый вид материала имеет свои границы устойчивости. Не допускается работа анодов в критических к ним условиям.
Помимо платины в качестве анодов используют металлы IV и V групп периодической системы элементов Д. И. Менделеева и их сплавы. Из-за образования на поверхности анода оксидного слоя, имеющего полупроводниковые свойства, указанные металлы переходят в пассивное состояние. В качестве анода активно работает поверхностная оксидная пленка, роль металла сводится к подводу тока. Оксидные слои, формирующиеся на металлах платиновой группы, проводят ток и служат активным покрытием анода. В некоторых средах в качестве анода можно использовать никель, свинец и оксиды рутения, свинца и марганца [1–4].
Находят применение составные электроды. Они представляют собой композицию, состоящую из пассивирующегося металла, на который наносят активный слой, работающий в качестве анода. Хорошим материалом для анодной основы является титан, имеющий высокую коррозионную стойкость и подвергающийся разной механической обработке. На титановую подложку наносят активную массу, которая выступает в роли анода. На свободной поверхности титана создается запорный пассивный слой, предотвращающий растворение.
Активный слой может состоять из металлов платиновой группы и оксида одного металла или смешанных оксидов с достаточной электронной проводимостью ( PbO 2 , MnO 2 , RuO 2и др.). Срок службы составных электродов определяется природой, коррозионной стойкостью активного покрытия и его пористостью. Толщина активного слоя составных электродов и способы нанесения зависят от типа покрытия, коррозионной стойкости и области применения анода. Толщина платинового или слоя оксида рутения может меняться от десятых долей до нескольких микрон, а толщина оксидно-марганцевого, магнетитового или оксидно-свинцового покрытия должна быть 2–4 мм.
Металлические покрытия наносят, как правило, гальваническим способом, применяют также приварку тонкой фольги и разные виды напыления. Оксидные слои наносят электрохимическим ( PbO 2), термохимическим ( RuO 2 , MnO 2) способами или нанесением металлического покрытия с последующим окислением.
Большое распространение в последнее время находят окисно-рутениевотитановые аноды ( ОРТА ). Металлическая титановая основа делает их удобными для изготовления электродов промышленных электролизеров. Созданы компактные и проницаемые для газа электроды, которые обеспечивают отвод выделяющихся на аноде газов на обратную сторону электрода. Срок службы таких электродов выше графитовых. Они имеют постоянные размеры и электрохимические характеристики, что позволяет сохранять необходимое напряжение и выход целевого продукта. Вместо титана в качестве подложки используют и биметаллические композиции.
Преимуществом ОРТА является высокая селективность и больший выход по току многих продуктов по сравнению с другими анодами.
К недостаткам электрода относят сравнительно высокую стоимость. Окисно-рутениевотитановые аноды не являются универсальными электродами. При неправильной эксплуатации они могут разрушаться. Эти электроды не рекомендуется использовать в условиях, когда возможна временная или периодическая катодная поляризация анода. При катодной поляризации нарушается пассивация ОРТА и они выходят из строя.
Механизм выделения кислорода на аноде существенно зависит от состава электролита, pH и материала анода [4]. Восстановление кислорода связано с природой частиц, адсорбирующихся на аноде, что ведет к изменению его состояния и потенциала выделения О 2. Например, потенциал разряда кислорода в сильнощелочных средах на Pt - , MnO 2– и PbO 2-анодах меньше, чем в кислых. Меняется и перенапряжение выделения кислорода в зависимости от материала анода. При равных условиях, потенциал выделения кислорода в кислых средах на анодах из PbO 2выше, чем на платине, а в щелочных средах – наоборот. Из-за разного механизма выделения кислорода в сильнощелочных средах на графитном аноде практически не реализуется окисление графита, в то время как в кислых средах при разряде молекул воды с образованием атомарного кислорода наблюдается интенсивное окисление с образованием СО 2.
Читать дальше