Напряжение для шва вполне допустимое.
Напряжение изгиба в металле двутавра: В=М/W.. В=10000/39,7.. В= 251,9 кгс/кв.см.
Напряжение в металле двутавра низкое..
Если только два шва – то этого расчета достаточно. Если есть еще швы – то при добавлении элементов
Центр тяжести и Yмах будут изменяться. Программа расчитана на добавление девяти элементов, что
для практических расчетов вполне достаточно. Расчет можно закончить на любом по счету элементе.
На колонку «Е»можно не обращать внимания – там выводятся промежуточные результаты.
Расчет рекомендуется повторить не менее трех раз – часто бывают незаметные ошибки ввода данных.
Внимание – центр тяжести сместился при добавлении шва. Для нахождения момента сопротивления нужно найти максимальное растояние от центра тяжести системы до внешнего края системы «Y мах». W = J / Y мах…
,,,,
Заданное произвольное сечение представим как набор элементарных прямоугольников.
Вспомогательную ось Хv-Хv расположим по нижней грани самого нижнего прямоугольника.
Для первого этапа необходимо взять самый нижний прямоугольник фигуры.
Далее берем следующий по расположению по высоте нижнего края прямоугольник.
Определяем площадь, расстояние центра тяжести от оси Хv-Хv и
момент инерции первого прямоугольника. Формула [ 1 ].
Определяем площадь, расстояние центра тяжести от оси Хv-Хv и
момент инерции второго прямоугольника.
Находим расстояние центра тяжести системы двух прямоугольников от оси Хv-Хv.
Ось Х-Х проходит через центр тяжести системы из друх прямоугольников.
Находим момент инерции каждого прямоугольника относительно оси Х-Х
проходящей через общий центр тяжести. Формула [ 2 ].
Находим общий для системы момент инерции и общую площадь.
Определяем растояния от Ц.Т. крайних верхних и нижних точек системы.
Находим моменты сопротивления изгибу по верхней и по нижней граням системы.
Запишем результаты.
Рассчитанную систему принимаем как первый прямоугольник.
Добавляем еще один прямоугольник и повторяем выше приведенный расчет.
Расчеты ведем, пока не просчитаем все прямоугольники произвольного сечения.
Примечание: В программах типа «Бейсик, Питон, Паскаль» такие расчеты делаем закольцоваными
( циклическими ) – и количество добавляемых элементов не ограничено.
Excelимеет встроенную блокировку циклов. Поэтому программа ограничена десятью элементами.
Высота первого прямоугольника = h.
Ширина первого прямоугольника = b.
.j1=b*h*h*h/12… Момент инерции первого прямоугольника. Формула [ 1 ].
.w1=j1/(h/2)… Момент сопротивления первого прямоугольника.
.s1=h*b… Площадь сечения первого прямоугольника.
.xc1=h/2… Высота центра тяжести первого прямоугольника от оси Х-Х.
.m1=s1*(h/2)… Момент площади первого прямоугольника относительно оси Х-Х.
# Точка расчета № 1…
Высота второго прямоугольника = h1.
Ширина второго прямоугольника = b1.
Высота расположения основания
второго прямоугольника относительно оси Х-Х = hx.
.j2=b1*h1*h1*h1/12… Момент инерции второго прямоугольника.
.w2=j2/(h1/2)… Момент сопротивления второго прямоугольника.
.s2=h1*b1… Площадь сечения второго прямоугольника.
.xc2=(h1/2)+hx… Высота центра тяжести второго прямоугольника от оси Х-Х.
.m2=s2*((h1/2)+hx)… Момент площади второго прямоугольника относительно оси Х-Х.
.xx=(m1+m2)/(s1+s2)… Расстояние Ц.Т. от оси Хv-Хv системы двух прямоугольников.
R1=xx-xc1… Расстояние между Ц.Т. системы и Ц.Т. первого прямоугольника.
R2=xc2-xx… Расстояние между Ц.Т. системы и Ц.Т. второго прямоугольника.
Формула [ 2 ].
.j1x=j1+( R1*R1*s1)…Момент инерции первого прямоугольника относительно Ц.Т. системы.
.J2x=j1+( R2*R2*s2)…Момент инерции второго прямоугольника относительно Ц.Т. системы.
.Jx=j1x+j2x… Момент инерции системы двух прямоугольников относительно Ц.Т. системы.
Sx=s1+s2… Суммарная площадь двух прямоугольников.
.... .....
Далее в расчете принимаем систему двух прямоугольников за новый, первый прямоугольник у которого:
.s1=Sx… xc1=xx… j1=Jx… m1=Sx*xx…
Вводим данные следующего прямоугольника:
( считая его новым вторым прямоугольником ) и снова проходим весь расчет,
начиная с # Точки расчета № 1…
Для проверки можно пересчитать сечение «Рельс» и »Проверочный прямоугольник».
……..
Кстати все вышеизложенные расчеты эффективнее выполнять используя программы.
Программы можно скопировать из книги «Python 3 Полезные программы книга третья.».
Программы значительно экономят время и уменьшают вероятность ошибок в расчетах..
Читать дальше