.xc=((f1*x1)+(f2*x2)+(f3*x3))/(f1+f2+f3)…
.r1=((h+hs+hm)-h/2)-xc… Радиус ц.т. головки от ц.т. рельса.
.r2=((hs/2)+hm)-xc… Радиус ц.т. стенки от ц.т. рельса.
.r3=xc-(hm/2)… Радиус ц.т. подошвы от ц.т. рельса.
.jx1=j1+(r1*r1*f1)… Момент инерции смещенной головки.
.jx2=j2+(r2*r2*f2)… Момент инерции смещенной стенки.
.jx3=j3+(r3*r3*f3)… Момент инерции смещенной подошвы.
.jx=jx1+jx2+jx3… Момент инерции рельса по ХХ.
.wx1=jx/((h+hs+hm)-xc)… Момент сопротивления изгибу рельса по ХХ.
.wx=jx/xc… Момент сопротивления изгибу рельса по ХХ.
Берем меньшее значение W из двух значений…
.jy1=h*b*b*b/12…
.jy2=hm*bm*bm*bm/12…
.jy3=hs*bs*bs*bs/12…
.jy=jy1+jy2+jy3… Момент инерции рельса по Y.
Выбор максимально удаленной части для оси Y-Y.
.wy=jy/(b/2)… Момент сопротивления изгибу рельса по YY.
.wy=jy/(bm/2)… Момент сопротивления изгибу рельса по YY.
Берем меньшее значение W из двух значений…
Выбираем меньшее значение момента инерции «j».
.rm=sqrt(jx/s)…
.rm=sqrt(jy/s)…
Запись программы в Excel.
Смотри открытый и закрытый листы Е 24.. ( Скачать из приложения ).
В колонке «Е»расчет промежуточных величин.
Параметры сечения трапеции
Высота трапеции = h.
Верх трапеции = a.
Основание трапеции = b.
Ось Х-Х проходит через Ц.Т. и параллельна основанию.
Ось Y-Y проходит через Ц.Т. и перпендикулярна основанию.
Рис. Сечение трапеции.
# Ведем расчет по классическим формулам 14-03-2020 г..
Pii = 3,141592654… Число Пи.
.x=(b-a)/2..
.y=(h*h)+(x*x)..
.ab=sqrt(y).. # Извлекаем квадратный корень ( Боковая грань трапеции ).
.xx=((a+x)*(a+x))+(h*h)..
.dt=sqrt(xx).. # Извлекаем квадратный корень (Диагональ трапеции ).
Ugrx=h/x..
Ugr=arctan(Ugrx).. # АрксТангенс от Ugrx в радианах.
Ug=Ugr*180/Pii.. # Угол в градусах…( Угол при основании ).
.s=h*(b+a)/2.. Площадь трапеции.
Далее расчет по оси Х-Х ( Ось Х-Х параллельна основанию ).
Разложим трапецию на два треугольника и на прямоугольник.
Sp=a*h.. # Площадь прямоугольника.
Jp=h*h*h*a/12.. # Момент инерции прямоугольника.
St=((b-a)/2)*h/2.. # Площадь одного треугольника.
.x=(b-a)/2.. # Основание одного треугольника.
Jt=h*h*h*x/36.. # Момент инерции одного треугольника.
.yt=h/3.. # Нейтральная ось от основания треугольника.
# Центр тяжести системы от основания ( нейтральная ось ).
.z=(((St+St)*yt)+(Sp*h/2))/(St+St+Sp).. ( На рисунке z обозначена как V ).
# Момент инерции двух треугольников со смещенным центром.
.at=z-yt.. # Смещение центра тяжести треугольников относительно Ц.Т. трапеции.
Момент инерции двух треугольников по Х-Х со смещенным центром.
Jts=2*(Jt+at*at*(St))..
# Момент инерции прямоугольника по Х-Х со смещенным центром.
.ap=z-(h/2).. # Смещение центра прямоугольника относительно Ц.Т. трапеции.
Jps=Jp+ap*ap*Sp.. Момент инерции прямоугольника по Х-Х со смещенным центром.
.jx=Jps+Jts.. # Момент инерции трапеции по оси ХХ.
.v=z.. # От основания – до нейтральной оси трапеции.
.wxv=jx/(h-v).. # Момент сопротивления изгибу для верхнего основания X-X.
.wxn=jx/v.. # Момент сопротивления изгибу для нижнего основания X-X.
.xr=jx/(Sp+St+St).. # jx / Площадь трапеции.
Rix=sqrt(xr).. # Извлекаем квадратный корень ( Радиус инерции ).
Далее расчет по оси YY.
# Разложим трапецию на два треугольника и на прямоугольник.
Sp=a*h.. # Площадь прямоугольника.
Jpy=a*a*a*h/12.. # Момент инерции прямоугольника.
# …
St=((b-a)/2)*h/2.. # Площадь одного треугольника.
.hy=(b-a)/2.. # Высота одного треугольника.
Jty=hy*hy*hy*h/36.. # Момент инерции одного треугольника Y-Y.
.yty=hy/3.. # Нейтральная ось от основания треугольника.
.ytyc=yty+(a/2).. # Нейтральная ось треугольника от оси Y-Y.
# Момент инерции двух треугольников со смещенным центром.
# .ytyc – Смещение центра треугольников от оси Y-Y.
Jtsy – Момент инерции двух треугольников по Y-Y со смещенным центром.
Jtsy=2*(Jty+ytyc*ytyc*(St))..
# Jpy – Момент инерции прямоугольника ( смещения нет ).
.jyy=Jpy+Jtsy.. # Момент инерции трапеции по оси Y-Y.
.wyv=jyy/(b/2).. # Момент сопротивления изгибу для Y-Y.
.xr=jyy/(Sp+St+St).. # ( jx / Площадь трапеции ).
Riy=sqrt(xr).. # Извлекаем квадратный корень ( Радиус инерции по Y-Y ).
Контрольный расчет:
Сечение в виде симметричной трапеции.
Высота трапеции = 30.
Основание трапеции = 50.
Верх трапеции = 20.
…
Боковая грань трапеции = 33.54102.
Диагональ трапеции = 46.097722.
Угол при основании = 63.434949 Градус.
Площадь трапеции = 1050.0.
Далее расчет по оси Х-Х.
Момент инерции по Х-Х одного треугольника Jt = 11250.0.
Центр тяжести системы Х-Х от основания = 12.8571.
Момент инерции двух треугольников по Х-Х со смещенным центром. = 26173.4694.
Читать дальше