Станислав Горобченко - Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем

Здесь есть возможность читать онлайн «Станислав Горобченко - Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2022, Жанр: Технические науки, Прочая научная литература, Технические науки, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Искусственный интеллект станет неотъемлемой частью автоматизированных систем управления технологическими процессами уже в ближайшее время. Его непосредственным материальным элементом являются интеллектуальные средства автоматизации и системы управления. В курсе рассматриваются основные подходы к искусственному интеллекту для целей создания интеллектуальных средств управления непрерывных производств, в частности, целлюлозно-бумажной промышленности и промышленной энергетики. Демонстрируются интеллектуальные средства автоматизации и управления, находящиеся в распоряжении специалистов по технологической автоматизации.
Конспект лекций курса предназначен для начинающих специалистов и студентов старших курсов, изучающих дисциплину по специальности "Автоматизация технологических процессов и производств".

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Обработка естественного языка – это способность компьютеров анализировать, понимать и синтезировать человеческий язык, включая устную речь. Сейчас мы уже можем управлять компьютерами с помощью обычного языка, используемого в повседневном обиходе. Например, используя Siri или Google assistant.

Кроме того, функционирование ИИ обеспечивают следующие технологии:

– Графика. Существование ИИ невозможно без графических процессоров, так как они предоставляют вычислительные мощности, необходимые для итеративной обработки данных. Для обучения нейросетей необходимы «большие данные» и вычислительные ресурсы.

– Интернет вещей собирает колоссальные объемы данных от подключенных устройств. Большая часть этих данных не проанализирована. Автоматизация моделей с помощью ИИ позволит использовать больше таких данных.

– Разрабатываются и по-новому комбинируются более совершенные алгоритмы, которые позволяют быстрее анализировать больший объем данных сразу на нескольких уровнях. Такая интеллектуальная обработка – ключ к выявлению и прогнозированию редких событий, пониманию сложных систем и оптимизации уникальных сценариев.

– API (программные интерфейсы приложений) представляют собой переносимые пакеты кода, благодаря которым функционал ИИ может быть интегрирован в существующие продукты и пакеты программ. С помощью API можно добавить функцию распознавания изображений в домашнюю систему безопасности или вопросно-ответные функции для описания данных, создания титров и заголовков, обнаружения в данных интересных закономерностей и иной полезной информации.

Группы искусственного интеллекта

Рис 12 Виды искусственного интеллекта в общей системе понятий ИИ Слабый - фото 2

Рис. 1.2. Виды искусственного интеллекта в общей системе понятий ИИ.

– Слабый ИИ – то, что уже удалось создать. Такой ИИ способен решать определённую задачу, зачастую даже лучше, чем человек.

– Сильный ИИ – способность машины учиться, мыслить, чувствовать, осознавать себя и принимать решения.

– Суперинтеллект – не только не создали, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей.

Машинное обучение

Машинное обучение – это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо.

Для принятия решения необходимо:

– Алгоритм – специальная программа, которая говорит компьютеру, что делать и откуда брать данные.

– Набор данных – примеры, на которых машина тренируется.

– Признаки – то, на что компьютеру смотреть при принятии решения.

Алгоритмы машинного обучения

– Линейная регрессия – применяют, если есть линейная зависимость между переменными.

– Байесовские алгоритмы – применение теоремы Байеса и теории вероятности.

– Нейронные сети – один из методов глубокого обучения.

Глубокое обучение

– Глубокое обучение – подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные данные.

– Нейронные сети – математические модели, созданные по аналогии с биологическими нейронными сетями. Они способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами.

Искусственные нейронные сети

Рис 13 Модель ИНС Итоги Искусственный интеллект одновременно и наука - фото 3

Рис. 1.3. Модель ИНС

Итоги:

Искусственный интеллект – одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.

Машинное обучение – одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.

Глубокое обучение – лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя сама с помощью данных.

Проблемы искусственного интеллекта

Искусственный интеллект сейчас находится в основном на уровне слабого интеллекта. Например, нет возможности уверенно и точно распознавать ограниченные образы.

Рис 14 Проблема распознавания образов в ИИ Будущее ИИ 1 ИИ станет умнее - фото 4

Рис. 1.4. Проблема распознавания образов в ИИ

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем»

Представляем Вашему вниманию похожие книги на «Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем»

Обсуждение, отзывы о книге «Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x