В современных конструкциях используются каркасы, образованные из слоев, армированных параллельными непрерывными волокнами, с хаотическим и пространственным армированием. Широко используются композиты, где структура каркаса образована пространственным плетением нитей и жгутов, и композиты со стержневым армированием (свойства их определяются свойствами стержней, изготовленных из прямолинейных нитей и жгутов). На рисунке В.3 представлены различные виды армирования каркасов в композиционных материалах. Например, волокнистое армирование позволяет использовать принципиально новые методы проектирования и изготовления изделий, основанные на том, что материал и изделие создаются одновременно в рамках одного и того же технологического процесса.
В результате совмещения армирующих элементов и матрицы образуется новый комплекс свойств композита, в том числе и свойства, которыми изолированные компоненты не обладают.
Появление ряда новых свойств связано с гетерогенной структурой, обусловливающей наличие границы раздела между волокнами и матрицей, в частности армирующими элементами и матрицей, существенно повышает трещиностойкость композита. Высокое сопротивление развитию разрушающих трещин в волокнистых материалах обусловлено их работоспособностью при значительных накопленных повреждениях.
Нестабильность технологических процессов изготовления конструкций из композиционных материалов, связанная с новизной и сложностью их реализации, ставит на первый план проблемы качества выпускаемой продукции. Обеспечение контроля качества всего объема выпускаемой продукции возможно только при условии применения методов и средств неразрушающего контроля (НК), который относится к числу наиболее приоритетных направлений научно-технического прогресса.
Рисунок В.3 – Классификация композитов по конструктивному признаку:
а – хаотически армированные: 1 – короткие волокна, 2 – непрерывные волокна; б – одномерно-армированные: 1 – однонаправленные непрерывные, 2 – однонаправленные короткие; в – двумерно-армированные: 1 – непрерывные нити, 2 – ткани; г – пространственно-армированные: 1 – три семейства нитей; 2 – n семейств нитей
Существует четыре наиболее важных направления развития неразрушающего контроля и диагностики: интеллектуализация методов и средств контроля и диагностики, разработка единой системы контроля качества технических объектов и окружающей среды, совершенствование диагностических технологий, организационное обеспечение неразрушающего контроля и диагностики на международном уровне [18].
В комплексе действий, направленных на обеспечение надежности и долговечности разрабатываемых конструкций из композиционных материалов, использование высокоэффективных методов неразрушающего контроля имеет решающее значение, поскольку малейшая ошибка в определении характера дефекта или его пропуск могут привести к труднопредсказуемым последствиям. Несмотря на существующие разнообразные методы и средства НК, до сих пор они не могут удовлетворять в отдельности потребности современного производства.
Анализ катастроф и их связи с конструкционными аспектами требует целенаправленной работы по изучению обстоятельств разрушений, их причин и сопутствующих факторов, выявлению определяющих процессов, оценке параметров и диапазонов их безопасных изменений. Исследования такого плана осуществляются с различных теоретических и концептуальных позиций с использованием различных информационных технологий. Изучается влияние особенностей конструктивного исполнения, технологии изготовления, характера нагрузок и воздействий. Большое внимание уделяется оценке эффективности применения высокопрочных материалов, методов неразрушающего контроля, различных ограничителей нагрузок, живучести конструкций в условиях аварий, проектируемых и запроектных, применяемых методов расчета прочности и ресурса. Обычно исследования этого направления базируются на традиционных методах строительной механики и теориях конструкционной прочности [15].
Особо рассматриваются вопросы механики, физики и химии деградационных процессов, приводящих в связи с необратимыми изменениями и повреждениями в структуре материалов к снижению прочностных характеристик, образованию и росту трещин, а также к катастрофическим отказам конструкций. Характер деградационных процессов и их роль в формировании разрушений существенно зависят от типа технической системы. Например, для баллонов давления и сосудов высокого давления основными причинами считаются механическая усталость, дефектность изготовления и коррозионные процессы в металлических фрагментах конструкции. Следовательно, дефектность конструкции и наличие трещин и расслоений остаются определяющими источниками разрушений.
Читать дальше
Конец ознакомительного отрывка
Купить книгу