Ее опасность понимают и поэты. Недаром А. Межи-ров пишет:
Если выбьет заглушку-пустяк, Хуже – если на корпусе – трещина.
Что прежде всего делает ремонтная бригада? Высверливает в устье трещины отверстие. Зачем? Чтобы снизить концентрацию напряжений и приостановить разрушение. Спустя некоторое время, эту трещину заварят совсем, да еще сверх того на поврежденное сечение положат «заплатку» из стали.
Так, что же, – для борьбы использовать простую дрель – высверлить вершину закритической трещины?
Но всякому здравому человеку ясно, что не сыскать такого Левшу, который изловчился бы сделать это за микросекунду – другую. К тому же, и в считанные микросекунды трещина не стоит на месте, а умудряется пробежать путь длиной от нескольких миллиметров до сантиметра. Ясно, что никакими традиционными механическими способами обезглавить или даже «подстричь» трещину не удается.
И все-таки, это возможно, но совершенно иными средствами. Предположим, что мы располагаем методом, с помощью которого можем нагреть устье трещины. Тогда материал в окрестностях вершины должен
расшириться. Но окружающая матрица металла воспрепятствует этому. Иначе говоря, очаг, в котором разрываются межатомные связи, окажется сжатым тем больше, чем выше температура нагрева и значительнее перепад между нею и температурой окружающего пространства. Понятно, каким образом возникающие термические напряжения повлияют на разрушение: они станут мощно его тормозить.
Но здесь человек может достичь и большего. Допустим, мы не остановились на достигнутом, а продолжаем нагревать металл и доводим участок при вершине трещины до температуры плавления. Жидкий металл вытечет, в устье образуется отверстие. Упирающаяся в него трещина будет надежно остановлена. Во-первых, потому, что напряжения по контуру отверстия в сотни раз меньше, чем на трещине. Во-вторых, поверхность его раскалена, следовательно, сжата окружающим холодным металлом.
А как осуществляется все это на деле? Нам, к примеру, нужно предохранить от катастрофы большой лист металла, растянутый какими-то совершенно произвольными силами. Поставим неподалеку батарею конденсаторов большой емкости. В ней запасен значительный электрический заряд. Посредством быстродействующего
включателя подключим батарею к защищаемому металлу.
Другим элементом антиаварийной системы служит рецептор – датчик, внимательно «прислушивающийся», не появится ли трещина. Он может быть любым, в частности звуковым. Здесь, однако, пришлось бы потребовать от него быть глухим ко всем звукам, кроме тех, которые издает трещина. В этом ему можно помочь. Любые случайные возбуждения, как правило, имеют низкочастотный спектр – слышимый. Другое дело трещина – она «работает» в неслышимой, ультразвуковой области. Вот и надо научить датчик реагировать только на ультразвук, а на остальные не обращать внимания.
Но это лишь один из принципов датчика. Имеет он и другой, не менее важный, который можно выразить латинским изречением: «Зетрег рагахиз», что значит «всегда готов». Датчик все время должен находиться в состоянии «боевой готовности», как радары, управляющие самолетами-перехватчиками и ракетами ПВО. Металл служит, спокойно «несет свой крест» – датчик настороже. И так все время, пока работает конструкция – и днем, и ночью, и в холод, и в жару.
Но вот «Смерть проснулась около полудня». Появилась и побежала в металле трещина. Вечно бодрствующий рецептор только этого и ждал – он сразу же услышал ее и подал сигнал включателю, отделяющему электрический заряд конденсаторов от конструкции. Тот немедленно открылся, и поток электрической энергии в виде короткого электрического импульса большой мощности хлынул в защищаемый металлический лист.
И тут проявились удивительные качества высокочастотного электрического тока. Он стремится распространяться не по массиву металла, а по тонкому поверхностному его слою. Это явление так и называют скин-эффект1. Импульсу этому не надо знать, где находится трещина, – он ее сам мгновенно обнаружит. Ни к чему ему и сведения о скорости разрушения – все равно скорость эта ничтожна в сравнении с быстротой распространения электромагнитного сигнала или света. Словно бы широкая сеть поиска накинута на конструкцию. Мгновенно сосредоточивает она на трещине едва ли не всю энергию разряжающегося конденсатора. Дело прежде
1 5кт – кожа, шкура (англ.).
всего в том, что трещина – это поверхность. Но не менее важно, что она рассекает живое сечение металла, по которому течет высокочастотный ток. Он обтекает трещину сначала по одной ее стороне, затем ныряет в острую вершину, потом бежит по другому берегу. Самое интересное происходит в острие трещины. Радиус быстрого разрушения ничтожен и плотность тока «всплескивается» до огромных значений, причем тем больших, чем более хрупким и опасным было разрушение. Огромный ток выделяет в крохотном пространстве устья трещины титаническое количество джоулева тепла. Металл за считанные микросекунды разогревается, расплавляется и испаряется. Из вершины трещины буквально фонтанирует поток вещества – от частичек и капелек металла до плазмы; острейшая вершина превращается в оплавленное по краям отверстие в доли миллиметра и целые миллиметры. Получается совсем как в персидской пословице: «Вы покажите нам отверстие, а мы из него сделаем ворота». Эти-то ворота – непреодолимый барьер на пути трещины. Прорваться сквозь них она не в состоянии. Таким образом, разрушение безнадежно проигрывает безжалостному термическому разгрому, как это ни странно, несущему металлической конструкции добро. Совсем как у М. Волошина
Читать дальше