Даже такая однородная граница между субзернами в монокристаллическом материале способна влиять на медленную трещину. Но задержать быструю она не может. Зато в поликристаллической стали зерна развернуты столь капитально, что иногда представляют собой множество подобных рядов. Если угол, составляемый соседними зернами, достигает 30°, такая граница непобедима, пробиться через нее трещина не в состоянии.
Параллельные ряды «римских черепах» останавливают трещину, идущую с любой скоростью и питающуюся любой упругой энергией. Если граница имеет винтовую природу (граница скручивания) и «сооружена» из винтовых дислокаций, то она еще прочнее. Понятно: ведь помимо того, что работают упругие поля дислокационных стенок, любой прорыв сопровождается возникновением ступеней, а это – дополнительные потери энергии. Поэтому уже 20-градусная винтовая граница – барьер совершенно непреодолимый для разрушения.
Вот как обстоят дела, когда мы проводим опыты в лаборатории с единственной границей между двумя кристаллами. Физики называют такую пару бикристаллом. Но в повседневной практике все сложнее – ведь сталь в конечном итоге неизбежно разрушается трещиной. А реальная сталь – это десятки и сотни тысяч, кристаллов. Каким же образом происходит «разгром» детали? Как
…Сквозь леса из кристаллов он держит свой путь напролом?..
(В. Шефнер)
Прежде всего разориентированы эти тысячи кристаллов по-разному. Огромное их количество едва развернуто по отношению друг к другу. Многие – на большие углы. Для такого опытного разрушителя, как трещина, возникают неограниченные возможности. Допустим, в этот момент ее противник – малоугловая граница. Прорыв происходит относительно легко, а раскол выходит на широкоугловую. Удар, еще атака… Прорыв не удал-
ся. Но трещина находится под непрестанным давлением внешних напряжений. Если она медленная, то у нее есть время для «артподготовки». Она начинает деформировать металл в своей вершине, насыщает его дислокациями, меняет его структуры, разворачивает кристаллиты перед собой и в конечном итоге прорывается через изувеченный материал. Если времени у нее нет, она поступает по-другому. Быстро разворачивается и идет к другой границе кристаллита, более удачно ориентированной. Мы уже говорили о «беспринципности» трещины – огромной ее маневренности и способности легко менять свою траекторию. Именно это она и делает. Своеобразный метод проб и ошибок. Быстро «накапливая» опыт, который по выражению восточного мудреца чаще всего – дитя ошибки, трещина находит уязвимое место в обороне поликристалла и прорывает одну его границу за другой. Конечно, трещина не только не существо, но даже и не вещество; поэтому говорить о каком-то гуманоидном опыте можно лишь в риторическом смысле. Физически это выглядит примерно так. Встретившись с барьером и не пробив его, трещина вынуждена развернуться и перейти на ближайшую по углу плоскость спайности кристалла. Происходит что-то вроде того, как если бы вы слишком сильно нажали на перо. Оно бы изогнулось, потеряв устойчивость. Так же изгибается и трещина, но на вполне определенный угол. Теперь уже она давит на другой участок границы. Иногда в удачном для нее месте произойдет прорыв. В неудачном – очередной разворот. Трещина как бы прощупывает различные участки границы, пока не находит самый уязвимый. В конечном итоге статистика (муза итогов!) оказывается иногда на стороне торжествующего разрушения. Уж очень разно-прочен стальной массив. Много в нем малоугловых лазеек для трещины.
Вот бы перекрыть их! В этом отношении немалые надежды подают нам точки, где сохранятся воедино границы трех зерен. Они оказываются крепкими орешками для любой, в том числе и для предельно быстрой трещины. Причин этому несколько. Прежде всего тройной стык – это три «вертикальных» ряда дислокаций, сошедшихся в одну точку. Надо сказать, что до сих пор мы не знаем, что происходит в этой самой точке. Каковы там перемещения атомов, что произошло с кристаллической решеткой? Поэтому нельзя сказать что-либо определенное
о природе взаимодействия трещины с самим тройным стыком. Зато ясно, что происходит при малейшем удалении от геометрической точки стыка. Тройной узел окружен двумя сортами напряжений. Термическими и упругими – от собственно дислокаций в стенках. И те, и другие гораздо больше, чем у простой границы. И что немаловажно, они простираются значительно дальше. Например, поля напряжений от дислокаций занимают в 10 раз большее пространство, чем у обычной стенки. Неудивительно, что напряжения эти, начиная действовать раньше, вызывают больший эффект торможения. Но это не все. Поле напряжений в окрестностях узла настолько сложное, что трещина, привыкшая в обычном монокристалле к расположению только по плоскости спайности, здесь «теряет свое лицо». Она распадается на множество мельчайших трещинок, способных размещаться даже не в спайности! Она вынуждена круто разворачиваться, описывать криволинейные пути, ветвиться. Словом, от монолитной трещины мало что остается. В этих условиях трещина, испытывающая, по выражению О. Мандельштама, «голод по рассеченному пространству», превращается из хищника в жертву. Она напоминает впервые оседланного дикого мустанга, взмыленного, мчащегося в облаке пыли по кругу. Он еще надеется разорвать удила, но уже навсегда потерял свободу. В нем еще буйствует сила разрушения и зла, но он уже неспособен обрушить ее на людей.
Читать дальше