Обратимся далее к поперечным стационарным волнам. В них возникают поперечные сдвиговые напряжения. Поэтому в подавляющем большинстве случаев волны эти так или иначе разворачивают разрушение.
Итак, все стационарные волновые явления активно влияют на движение трещины и способны не только тормозить и ускорять ее, но и переориентировать по своему желанию.
Многократно вводя энергию в окрестности вершины разреза, волна способна за длительное время контакта не только изменить поле напряжений, но и самым решительным образом – траекторию разрушения.
Особенно преуспевают в этом поверхностные волны, распространяющиеся в плоскости самой трещины. Мы уже говорили, что они с увеличением расстояния ослабляются меньше, нежели продольные и поперечные. Кро-
ме того, волна, идущая по трещине, как по волноводу, подводит всю свою энергию прямо к вершине в отличие от продольных и поперечных, подходящих к устью трещины лишь частью своего фронта. Следовательно, коэффициент полезного действия поверхностной волны выше. Как же реагирует трещина на появление в своей вершине рэлеевских волн? Если эти волны бегут «ноздря к ноздре» по обоим берегам трещины, разрушение ускоряется в своей плоскости. Иное дело, если волна «струится» по одному из берегов. В ней точки колеблются в плоскости, нормальной к поверхности трещины. При этом каждая из них движется по эллипсу точно так, как перемещаются они в волне на поверхности воды. Ведь никого не удивляет, что море выбрасывает предметы на сушу. Если бы точки двигались только вверх и вниз, этого не случилось бы. Поэтому в рэлеевской волне возникают сдвиговые напряжения под прямым углом к скорости трещины. Опыт, проведенный И. С. Гузем и автором этой книги на трещине, скорость которой составляла 1 км/с, подтвердил разворот на 80-85°.
Было бы упущением не упомянуть здесь о волнах еще одного вида – изгибных. Они наиболее часто образуются в твердых телах. Именно такого рода нагружению подвергаются различные части летательных аппаратов, стрелы подъемных кранов, детали мостов и машин. Все волны, рассмотренные нами ранее, повышали концентрацию напряжений в вершине трещины. Иное дело из-гибные. Они способны понижать напряжения в устье и таким образом тормозить трещины. Вместе с тем, подобно поперечным упругим колебаниям, изгибные волны отклоняют разрушение от первоначальной траектории и разворачивают трещину.
На практике очень часто волновые явления обладают достаточно высокой интенсивностью и способны ощутимо влиять на зарождение и распространение трещины. Так, разрушение авиационных конструкций хвостовых частей самолета часто наступает под действием мощных шумовых и звуковых потоков, возбуждаемых двигателями.
М. Булгаков в романе «Мастер и Маргарита» описывает следующую фантастическую картину: «- Мессир, поверьте, – отозвался Коровьев и приложив руку к сердцу, – пошутить, исключительно пошутить… – Тут он вдруг вытянулся вверх, как будто был резиновый, из
пальцев руки устроил какую-то хитрую фигуру, завился, как винт, и затем, внезапно раскрутившись, свистнул. Этого свиста Маргарита не услыхала, но она его увидела в то время, когда ее вместе с горячим конем бросило саженей на десять в сторону. Рядом с нею с корнем вырвало дубовое дерево, и земля покрылась трещинами до самой реки».
Диапазон упругих частот, генерируемых в конструкциях современного реактивного самолета, простирается от инфразвуковых (измеряемых считанными герцами) до ультразвуковых (исчисляемых миллионами герц). Последствия страшны: выходит из строя обшивка руля высоты, что является прямым следствием шумов, создаваемых струей ракетного ускорителя. В американской печати отмечалось, что длительное время в ракете «Титан», построенной в США, появлялись подобные разрушения, также связанные с мощными шумами.
Для англо-французского сверхзвукового самолета типа «Конкорд» максимум звуковой интенсивности приходится на диапазон 100-1000 Гц. При этом в хвостовой части фюзеляжа преобладает участок спектра 100- 250 Гц. Интересно, что при испытании самолетных конструкций применяют громкоговорители большой мощности со специальными рупорами; на «подопытные» объекты воздействуют звуком тысячи и тысячи часов – до полного разрушения металла. При этом используют то обстоятельство, что трещина реагирует на множество колебаний различных частот и особенно на резонансную частоту, зависящую не только от особенностей самой конструкции, но и от длины трещины. Оказалось, что эти резонансные частоты и находились в области особой чувствительности 100-250 Гц.
Читать дальше