Схемы сил, действующих на одну из лопастей несущего винта в вертикальной плоскости и плоскости вращении, приведены на рис. 32; на векторах сил указаны примерные их значения, так как изображение их в одном масштабе потребовало бы большого размера рисунка.
Рис. 32. Схема сил, действующих на лопасть несущего винта вертолета:
1 — подъемная сила; 2— сила веса лопасти; 3— центробежная сила; 4— кориолисовы силы
Угол β называется углом конусности и для каждого типа вертолета зависит в основном от оборотов несущего винта и полетного веса вертолета. Следует напомнить, что, как показали специальные летные исследования, более гибкая лопасть несущего винта и в то же время достаточно жесткая на кручение испытывает в полете меньшие напряжения, имея большее аэродинамическое качество, чем такая же, но более жесткая лопасть.
Кроме того, известно, что аэродинамическое качество лопасти в сильной степени зависит от состояния ее поверхности, формы в плане и геометрической закрутки. Чем глаже поверхность лопасти, тем выше ее качество. Трапециевидные в плане лопасти, так же как крылья самолета, с сужением 2–2,5 и с отрицательной на конце геометрической закруткой имеют качество на 10–12 % выше, чем прямоугольные в плане незакрученные лопасти (рис. 33).
Рис. 33. Зависимость относительного коэффициента полезного действия несущего винта от формы лопасти и качества ее поверхности
Ознакомимся подробнее с работой несущего винта.
Первые вертолеты, имевшие несущие винты с жестко закрепленными на втулке лопастями, могли неподвижно висеть у земли при безветрии. При первой же попытке начать поступательное движение вертолет начинал крениться; с увеличением скорости крен резко возрастал и вертолет либо прекращал движение, либо опрокидывался.
Происходило это вследствие разности подъемных сил на левой и правой половинах несущего винта с жестко закрепленными лопастями при наличии поступательной скорости.
На рис. 34 изображено поле скоростей несущего винта вертолета при полете с поступательной скоростью.
Рис. 34. Поле скоростей несущего винта при полете с поступательной скоростью (вид сверху)
Примем, что окружная скорость концов лопастей несущего винта равна 210 м/сек, а скорость полета вертолета — 40 м/сек, тогда в зависимости от азимутального положения лопасти скорость набегающего на лопасть потока будет Меняться от V max = 250 м/сек до V min= 170 м/сек. Как известно, подъемная сила элемента лопасти равна
Y эл= с у∙ S э∙ ρ∙ V 2 э/2
Нетрудно подсчитать, что подъемная сила левой половины несущего винта с жестко закрепленными во втулке лопастями в данном случае будет в 2,15 раза больше, чем подъемная сила правой половины, что неминуемо приведет к опрокидыванию вертолета.
Проследим, как работает в полете с поступательной скоростью одна из лопастей несущего винта вертолета на шарнирной подвеоке. Начнем с азимута 0°. В этой точке скорость конца лопасти относительно воздуха можно принять равной V окр= ω∙ R. в нашем случае 210 м/сек. Двигаясь дальше при вращении несущего винта, эта лопасть начинает обдуваться встречным потоком воздуха и в азимутальной точке 90° будет иметь скорость относительно воздуха 250 м/сек. Это максимальная скорость лопасти относительно воздуха. Условимся лопасть, идущую от азимутальной точки 0° к азимутальной точке 180°, называть наступающей лопастью, а идущую от азимутальной точки 180° к точке 0° через 270° — отступающей лопастью.
Подъемная сила у наступающей лопасти при отходе ее от точки 0° начинает увеличиваться вследствие роста скорости обтекания воздуха. Равновесие сил на лопасти нарушится, и увеличившаяся подъемная сила начнет поднимать лопасть вверх, поворачивая ее около оси горизонтального шарнира (рис. 35).
Рис. 35. Схема появления кориолисовой силы при взмахе лопасти несущего винта вверх
Читать дальше