Деление частоты
Н. — Если частоту сигнала можно умножить, то вполне законно предположить, что ее можно и разделить. Это правильно, Любознайкин?
Л. — Ты сделал правильный вывод. Я бы даже сказал, что разделить частоту легче, чем умножить. Для этого существует несколько способов, и мы последовательно рассмотрим основные из них. Если частота изменяется относительно мало, можно взять импульсный генератор и синхронизировать его подлежащей делению частотой.
Мультивибратор
Н. — Что ты называешь импульсным генератором?
Л. — Например, мультивибратор. Принцип работы этого устройства проще, чем ты думаешь. Его схему я подготовил для тебя на рис. 78.
Рис. 78. Мультивибратор на двух транзисторах. Транзисторы поочередно запираются и отпираются: когда один из них заперт, другой находится в состоянии насыщения и наоборот.
Н. — Действительно, при рассмотрении схема не производит впечатления сложной. Но теперь я не очень доверяю твоим подобным заявлениям. Можно сказать, что это двухкаскадный усилитель, выход которого замкнули на вход.
Л. — Абсолютно верно, и именно по этой причине устройство начинает генерировать. Вспомни, что я рассказывал тебе о дифференцирующих схемах, и ты довольно легко поймешь, как работает новая. Предположим, что вначале ток проводит транзистор Т 1 и что он находится даже в состоянии насыщения. Схема между его коллектором, эмиттером и базой оказывается как бы замкнутой накоротко. Мы должны предположить, что в этот момент транзистор Т 2 заперт, так как напряжение на его базе отрицательное. В этих условиях протекающий по резистору R 4 ток, разряжая конденсатор С 2 , стремится снизить отрицательный потенциал базы этого транзистора (и даже сделать его положительным). В один прекрасный момент база Т 2 становится положительной…
Н. — Тогда этот транзистор тоже начинает пропускать ток и также достигает состояния насыщения, и на этом все останавливается.
Л. — He торопись, Незнайкин. Если транзистор Т 2 начнет проводить ток, то потенциал его коллектора, который был равен +E , резко упадет до нуля. Это резкое изменение через конденсатор С 1 будет полностью передано на базу транзистора Т 1 . База резко станет отрицательной, и транзистор Т 1 окажется запертым. Одновременно с этим повышение потенциала коллектора транзистора Т 1 приводит к заряду конденсатора С 2 и тем самым поможет транзистору Т 2 достичь состояния насыщения.
Так как база транзистора Т 1 имеет отрицательный потенциал, протекающий по резистору R 3 ток разряжает конденсатор С 1 и повышает потенциал базы Т 1 до тех пор, пока он достигнет небольшого положительного значения. В этот момент транзистор Т 1 начнет пропускать ток, что вызовет запирание транзистора Т 2 , и все начнется сначала. На рис. 79 я нарисовал тебе изменения напряжений на коллекторах и на базах обоих транзисторов.
Н. — Я примерно догадываюсь, как это происходит. По сути дела напряжения на базах имеют примерно такую же форму, как и на рис. 69, и это вполне нормально, потому что эти напряжения получены после цепочек связи, состоящих из конденсаторов и резисторов. Но меня изрядно удивляет форма напряжений на коллекторах. Почему напряжение так медленно повышается и так резко падает?
Л. — Медленный подъем кривой объясняется очень просто. Когда, например, транзистор Т 1 запирается, потенциал его коллектора не может быстро повышаться, так как для этого конденсатор С 2 должен зарядиться через резистор R 1 . Это придает кривой, о которой ты говоришь, закругленную форму.
А когда транзистор, например Т 1 , резко отпирается, то схема по его коллектору как бы замыкается накоротко. Этим и объясняется большая крутизна спада напряжения на коллекторах, которую можно видеть на кривых изменения потенциалов коллекторов Т 1 и Т 2 . Кроме того, не следует забывать, что обе базы транзисторов не могут одновременно стать положительными. Как только база оказывается под малым положительным потенциалом, переход база — эмиттер становится проводящим, образуя настоящее короткое замыкание на корпус. Этим и объясняются горизонтальные участки кривых напряжений обеих баз на рис. 79.
Читать дальше