Достоинства низкого выходного сопротивления
Н. — Твои доводы я понял. Но я хочу задать один вопрос, который тебе, несомненно, покажется глупым: что ты выиграл от снижения выходного сопротивления своего каскада?
Л. — В твоем вопросе абсолютно нет ничего глупого. Я вновь все объясню, но скажи мне, пожалуйста, Незнайкин, зачем нужно тебе выходное напряжение?
Н. — Хм… да чтобы использовать его!
Л. — Совершенно верно. Однако «использовать» напряжение означает получать с его помощью ток. Если у источника напряжения (на выходе твоего усилителя) низкое внутреннее сопротивление, ты можешь забрать у него значительный ток без снижения напряжения.
Выходное напряжение, вырабатываемое источником с низким внутренним сопротивлением, мало чувствительно к различным помехам, как внешним, так и вызываемым изменением тока в цепи, подключенной к источнику. Так, например, в моей установке высококачественного воспроизведения звука насчитывается семь каскадов, собранных по схеме катодного повторителя. Один такой каскад установлен на самом выходе моего ЧМ-приемника; напряжение звуковой частоты (не более 1 в) поступает с источника, внутреннее сопротивление которого всего лишь 140 ом (а без этого каскада оно было бы не менее 10 ком). В этих условиях я могу позволить себе передавать низкочастотный сигнал по длинным проводам, например, к установленному на другой стороне дополнительному громкоговорителю. Их можно прокладывать рядом с трансформаторами питания, ибо провода, по которым идет низкочастотный сигнал, не «ухватят» никаких помех от сети 50 гц. Если бы, например, я захотел передать этот сигнал на сотню метров по экранированному проводу, то емкость провода из-за экрана составила бы около 10 000 пф.
А для самых высоких передаваемых частот (максимальная интересующая нас частота 20 кгц) реактивное сопротивление этого провода составляет около 800 ом. Для сигнала, поступающего от источника с внутренним сопротивлением 10 ком, эти 800 ом явились бы почти коротким замыканием, что привело бы к полной потере всех высоких частот и сильному искажению воспроизводимого звука. При моем же каскаде — катодном повторителе с его внутренним сопротивлением 140 ом эти 800 ом — можно просто не принимать во внимание: они внесут некоторый сдвиг фазы, ноне вызовут никакого ощутимого ослабления звука.
Н. — Да, но скажи мне… ведь твой каскад с катодной связью напряжения не усиливает?
Л. — Ты прав. Каскад с катодной связью не дает никакого усиления по напряжению (коэффициент усиления даже немного, меньше единицы), но «переписывает» входное напряжение, получаемое от генератора с очень большим внутренним сопротивлением, не способным давать большой ток; в результате мы получаем выходное напряжение, «обросшее мышцами», т. е. равное или почти равное входному напряжению, но в отличие от него способное давать значительный ток без ущерба для себя. Выходное напряжение стало «невозмутимым» — оно мало подвержено влиянию помех.
Биологическая аналогия
Н. — Совсем как мышь, ведущая слона на поводке!
Л. — Конечно, это очень модно! Только что в Булонском лесу я видел трех таких мышей, гуляющих со своими слонами!
Н. — Ты напрасно смеешься надо мной. Дай мне закончить, Любознайкин. Я вспомнил один цирковой номер, который мне однажды довелось видеть. Мышь бежала по бортику манежа и тащила тончайший поводок, завязанный на шее слона. А слон шел за мышью и старался удерживать без изменения натяжение поводка: шел быстрее, когда поводок натягивался, и замедлял шаг, если он провисал. Слон шел с такой же скоростью, что и мышь, но он даже не почувствовал бы препятствия, которое остановило бы его поводыря. Зрителям же казалось, что мышь тащит толстокожего ленивца, и они хохотали до упаду.
Л. — Я подозреваю, что эта история придумана тобою для пользы дела… Во всяком случае она показывает, что благодаря «слону-повторителю», ты хорошо понял принцип катодного повторителя.
Схемы на транзисторах
Н. — Это схема, которую можно сделать только на лампах — транзисторы здесь не годятся, потому что у них нет катода.
Читать дальше