Рассмотрим сначала параллельный порт/таймер 8536. В нем используется пара стробирующих сигналов RD ' и WR ' , а также сигнал разрешения входа СЕ ' (который, как и обычно, поступает с выхода дешифратора адреса). Кроме того, на соответствующий вход микросхемы подаются тактовые сигналы для синхронизации таймера и управления внутренней логикой. Микросхема 8536 включает цепи полностью векторизуемых прерываний с подтверждением, выставляющие вектор на линии данных в течение цикла подтверждения прерывания. Реализация всех этих излишних для нас возможностей требует использования приоритетной цепочки, связывающей устройства (с помощью входного сигнала IEi и выходного IEO), а также входа INTACK ' , управляющего установкой (программируемого) вектора. Мы же ограничимся выходным сигналом INT' для организации запроса прерывания. Из состава интерфейсной шины к параллельному порту подключаются линии данных D0-D7, а также адресные линии (А0, А1) для адресации внутренних регистров; использование двух младших адресных линий приводит к отображению внутренних регистров на адресное пространство, начинающееся с базового адреса. В нашем случае внутренние регистры располагаются по адресам $84000-$84003.
Число адресных выводов наводит на мысль, что в микросхеме имеются 4 внутренних регистра, что, однако, весьма далеко от истины: фактически порт содержит 41 регистр для записи и 48 регистров для чтения! (Мы же предупреждали, что программирование этих микросхем — кошмарное занятие!) Для доступа к регистрам вы сначала записываете в «управляющий» регистр по адресу база + 3 ($84003) байт, содержащий адрес требуемого регистра данных, а затем читаете из или записываете в выбранный регистр. В отличие от этого регистры данных параллельного порта допускают непосредственную адресацию, и в них записывают или из них читают прямо по адресам база, база + 1 и база + 2.
На рис. 11.14 показаны временные диаграммы циклов чтения и записи, позволяющие рассмотреть проблемы синхронизации строба RD ' .
Рис. 11.14. Синхронизация параллельного порта Zilog 8536.
Спецификации микросхемы 8536 дают минимальное значение интервала между установкой адресных сигналов А0-А1 и фронтом строба RD ' (время упреждения) 80 нc. В спецификациях также определяется время отклика, как обычно, довольно большое — бедняге 8536 требуется 255 нc для выдачи данных; длительность же сигнала RD' должна составлять 390 нc (минимум). С большим временем отклика мы уже умеем бороться с помощью состояний ожидания. Однако состояния ожидания не решат проблему с временем упреждения адреса по отношению к RD ' (из рис. 11.4 видно, что сигнал DS ' может появиться всего лишь через 30 нc после установки правильного адреса). Чтобы все работало правильно, мы должны задержать RD' на один такт ЦП: это легко сделать с помощью того же сдвигового регистра, который генерирует сигнал DTACK ' . Мы просто образуем логическое И «быстрого» строба RD ' и (инвертированного) выходного сигнала Q 0 сдвигового регистра, который не устанавливается до перепада тактового сигнала ЦП между состояниями S3 и S4. В результате образуется задержанный строб RD ' (который мы назвали DELRD ' ), начинающийся на один такт позже (в тот же момент, что и нормальный DS ' цикла записи). Описанная процедура предоставляет порту дополнительные 125 нc для упреждения адреса (в сумме 155 нc). Генератор состояний ожидания по-прежнему вводит два состояния ожидания, что делает полную длину цикла достаточной для медленных периферийных устройств.
К счастью, для сигнала WR ' не требуется аналогичная схема, потому что МП 68008 предусмотрительно увеличивает время упреждения на один такт для циклов записи (обратите внимание на задержку сигнала DS ' в цикле записи на рис. 11.4), а для микросхемы 8536 требуется то же значение времени упреждения (80 нc, см. рис. 11.14).
Интерфейс последовательного порта 8530 выглядит почти так же. Отличие заключается лишь в том, что адресные входы, выбирающие внутренние регистры, называются по-другому. Сигнал А0 подается на вход А/В ' (выбирающий канал А или В сдвоенного порта), а сигнал А1 — на вход D/C ' (который выбирает регистры данных или управления). Эта микросхема тоже не обижена регистрами: в ней имеются в каждом канале 16 регистров для записи и 9 регистров для чтения; доступ к ним осуществляется так же, как и в микросхеме 8536, в два этапа.
Читать дальше