Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь

Здесь есть возможность читать онлайн «Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2004, ISBN: 2004, Издательство: Горячая линия-Телеком, Жанр: sci_radio, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

...И мир загадочный за занавесом цифр. Цифровая связь: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «...И мир загадочный за занавесом цифр. Цифровая связь»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга в занимательной форме рассказывает о проблемах цифровой связи. Открывает удивительный мир двух цифр: 0 и 1, с помощью которых можно «спрятать» в электронный «шкафчик» многотомные издания А. Дюма, разгадать тайну знаменитой Джоконды, «законсервировать» или передать на расстояние речь, музыку, изображение. Знакомит с линиями передачи цифровой информации, цифровыми многоканальными системами передачи.
Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.

...И мир загадочный за занавесом цифр. Цифровая связь — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «...И мир загадочный за занавесом цифр. Цифровая связь», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим, что колебание маятника длилось одну секунду. Тогда, предоставив маятнику возможность свободно колебаться после первого толчка, мы бы сказали, что он колеблется с частотой 1 герц. Если за одну секунду маятник совершит два колебания, то говорят, что он колеблется с частотой 2 герца и т. д. Единица частоты колебания получила свое название в честь великого немецкого ученого Генриха Герца (1857–1894) и обозначается сокращенно Гц.

Вернемся к колеблющейся струне, излучающей звуковую волну. Попробуем поставить на пути звуковой волны пластину и непрерывно измерять давление, оказываемое на нее волной. При приближении к пластине области сжатого воздуха давление на нее увеличивается по сравнению с атмосферным. Но вот степень сжатия воздуха постепенно уменьшается — это к пластине подходит область разреженного воздуха. Давление на пластину становится меньше атмосферного. Построив график изменения со временем звукового давления на пластину, с удивлением обнаруживаем, что он повторяет график колебания маятника, т. е. на бумаге будет вычерчена та же синусоида.

Правда струна колеблется намного быстрее в секунду она совершит не однодва - фото 41

Правда, струна колеблется намного быстрее: в секунду она совершит не одно-два, а десятки и сотни колебаний. Например, самая толстая (басовая) струна рояля, "обладающая" самым низким звуком, колеблется при ударе на клавишу с частотой 27 Гц. Струны гитары издают более высокие звуки, они совершают колебания с частотами от 144 Гц (самая толстая струна) до 576 Гц (самая тонкая струна). Наиболее высокую частоту колебаний звука в оркестре (9000 Гц) имеет флейта-пикколо.

Вам приходилось когда-нибудь в погожий весенний день наблюдать за показаниями температуры на городском световом табло? Уже ласково светит солнце, хотя в воздухе еще прохладно. Вот краешек солнца закрыла тучка, и температура чуть понизилась. Тучка прошла — и вновь стало теплее. Дуновение ветра также заставляет "скакать" цифры на электронном табло. Если через очень короткие промежутки времени (скажем, через 1 с) наносить значения температуры воздуха на график, то получим множество точек, отражающих изменения температуры. Таким образом, имеем дело не с непрерывной кривой изменения температуры, а лишь с ее значениями, отсчитанными через определенные промежутки времени. По сути говоря, мы описали некоторый непрерывный процесс последовательностью десятичных цифр.

От десятичной системы счисления легко перейти к двоичной системе счисления см - фото 42

От десятичной системы счисления легко перейти к двоичной системе счисления (см. главу "Внимание: конкурент!"). И пусть нас не смущает, что температура выражается не целым числом. Можно просто-напросто не обращать внимания на запятую, отделяющую десятые доли градуса, и записывать в двоичной форме, например, не число 15,6 °C, а число 156: ведь знаем же мы, в конце концов, что температура воздуха не может выражаться ни числом 1,56 (так как она высвечивается на табло с точностью до десятых долей градуса), ни числом 156.

Невыясненным остался вопрос, как часто следует брать отсчетные значения непрерывной кривой, чтобы отследить все ее изменения. Так, при более длительных промежутках времени между наблюдениями за температурой воздуха не удастся отследить все ее быстрые изменения.

Давление звуковой волны, распространяющейся от струны, изменяется во времени по закону синусоиды. Чтобы отследить все ее изменения, очевидно, достаточно брать отсчетные значения в моменты, соответствующие максимумам и минимумам синусоиды, т. е. с частотой, превышающей, по крайней мере, вдвое частоту звукового колебания. Например, если струна совершает 20 колебаний в секунду (частота 20 Гц), максимальное звуковое давление будет наблюдаться через каждую 1/20 с, т. е. через 50 мс. (Напомним, что 1 с = 1 000 мс = 1 000000 мкс = 1 000000000 нс.) Максимумы и минимумы кривой звукового давления разделены интервалами в 25 мс.

Значит, отсчетные значения но кривой должны следовать не реже, чем через 25 мс, или с частотой 40 отсчетов в секунду (40 Гц). Обычно отсчетные значения на кривой берут "с запасом": не в 2 раза чаще, чем колеблется звук, а, скажем, в 10 раз. В этом случае они очень хорошо передают форму кривой.

Интересен случай, когда звуковые волны излучаются двумя одновременно колеблющимися струнами. На рисунке показаны три варианта: вторая струна колеблется в 2, 3 и 10 раз чаще, чем первая. Давления двух звуковых волн на пластину, помещенную на их пути, складываются. График результирующего давления уже не является синусоидой. Мы видим, что быстрые изменения этой кривой обусловлены более высокочастотным колебанием (в данном случае колебанием второй струны). Поэтому для того чтобы отследить все быстрые изменения результирующего звукового давления, отсчетные значения следует брать с частотой, по крайней мере, вдвое превышающей частоту колебания второй струны. В последнем варианте частота взятия отсчетных значений должна превышать 400 Гц. Это означает, что отсчетные значения должны следовать не реже чем через 1/400 = 0,0025 с = 2,5 мс, а лучше — еще чаще, например через 0,5 мс.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «...И мир загадочный за занавесом цифр. Цифровая связь»

Представляем Вашему вниманию похожие книги на «...И мир загадочный за занавесом цифр. Цифровая связь» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «...И мир загадочный за занавесом цифр. Цифровая связь»

Обсуждение, отзывы о книге «...И мир загадочный за занавесом цифр. Цифровая связь» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x