Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Заметки на полях

ТТЛ-микросхемы значительно менее удобны на практике, поскольку для них характерно балансирование десятыми вольта: напряжение логического нуля составляет не более 0,8 В, напряжение порога переключения от 1,2 до 2 В, напряжение логической единицы не менее 2,4 В. Иногда вы и сейчас можете встретить подобные требования к логическим уровням (в целях совместимости). ТТЛ могут работать в довольно узком диапазоне напряжений питания: практически от 4,5 до 5,5 В, а нормы предполагают обычно от 4,75 до 5,25 В, т. е. 5 В ±5 %. Максимально допустимое напряжение питания составляет для разных ТТЛ-серий от 6 до 7 В, при превышении его они обычно «горят ясным пламенем». Низкий и несимметричный относительно питания порог срабатывания элемента приводит и к невысокой помехоустойчивости. Другим крупным (и даже более серьезным, чем остальные) недостатком ТТЛ является высокое потребление (до 2,5 мА на один базовый элемент), так что приходится только удивляться, почему микросхемы ТТЛ, содержащие много таких элементов, не требуют охлаждающего радиатора. По всем этим причинам, даже если вы будете повторять старые схемы на ТТЛ-микросхемах, их рекомендуется заменять на современные АС или НС-элементы КМОП, с которыми они совместимы по выводам.

И тут мы плавно переходим к основному недостатку базовых КМОП-технологий — низкому (в сравнении ТТЛ) быстродействию. Это обусловлено тем, что изолированный затвор МОП-транзистора представляет собой конденсатор довольно большой емкости (в базовом элементе до 10–15 пФ). В совокупности с выходным резистивным сопротивлением предыдущей схемы такой конденсатор образует фильтр нижних частот. Обычно рассматривают не просто частотные свойства, а время задержки распространения сигнала на один логический элемент, которое может достигать у базовой серии КМОП величины 250 не (сравните: у базовой серии ТТЛ — всего 10 нс), что соответствует одному периоду частоты 4 МГц. На практике при напряжении питания 5 В быстродействие базового КМОП не превышает 13 МГц. Попробуйте соорудить на логических элементах генератор прямоугольных сигналов по любой их схем, которые будут разобраны далее, и вы увидите, что уже при частоте 1 МГц форма сигнала будет скорее напоминать синусоиду, чем прямоугольник.

Другим следствием высокой входной емкости является то, что при переключении возникает импульс тока перезарядки этой емкости, т. е. чем выше рабочая частота, тем больше потребляет микросхема, и при максимальных рабочих частотах ее потребление может сравниться с потреблением ТТЛ.

Развитие КМОП было, естественно, направлено в сторону устранения или хотя бы сглаживания этих недостатков. Однако, в отличие от ТТЛ, базовый вариант которой, представленный в отечественном варианте сериями 155 и 133, сейчас практически забыт (исключение см., например, главу 19 , раздел «Аналоговая индикация»), оригинальная базовая серия 4000В [7] У крупнейшего производителя этих микросхем, фирмы Fairchild Semiconductor, принято название CD4000B, и мы тоже так ее будем называть. У других производителей могут отличаться буквы в наименовании (см. Приложение 3 ). применяется и по сей день — в основном из-за неприхотливости и беспрецедентно широкого диапазона питающих напряжений (от 3 до 18 В), что позволяет без излишних проблем совмещать цифровые и аналоговые узлы в одной схеме.

Отечественные аналоги стандартной серии CD4000B — это «бытовая» серия К561 в корпусе типа DIP, или «военная» 564 в планарном корпусе, аналоге американского SOIC или SOT. Имеется и ряд уже упоминавшихся быстродействующих КМОП-элементов (в первую очередь серии АС и НС). Для быстродействующих серий пришлось пожертвовать расширенным диапазоном питания, например, номинальный диапазон напряжения питания для 74НС начинается, правда, от 2, но простирается всего до 6 В, отсюда и популярность старинной CD4000B. Для быстродействующих КМОП западное название серии (74) и разводка выводов микросхем совпадает со старой базовой ТТЛ (а не с CD4000B), что, безусловно, было продиктовано маркетинговыми соображениями, но сделало базовую серию несовместимой с быстродействующими по выводам. Отечественный аналог называется логичнее— 1561 или 1564, но разводка выводов, увы, в целях совместимости с западными также совпадает с ТТЛ, а не с базовой КМОП. Чтобы не запутаться в зарубежных наименованиях (что там ТТЛ, а что КМОП), можно применять простое правило: если в наименовании серии присутствует буква С (от «комплементарный», кроме НС и АС, есть и просто С), то это КМОП, все остальные многочисленные представители семейства 74 есть ТТЛ-микросхемы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x