ТТЛ-микросхемы мы тоже упомянули исключительно ввиду их еще недавней практической важности, а на практике, за небольшими исключениями, вы будете иметь дело только с КМОП-микросхемами. Все современные микроконтроллеры и другие цифровые микросхемы либо полностью построены на КМОП-технологиях, либо имеют КМОП-совместимые выходы и входы. Базовые серии ТТЛ были существенно более быстродействующими, чем КМОП, но современные микросхемы малой степени интеграции из серий АС (Advanced, т. е. «продвинутая» CMOS) и НС (High-speed, т. е. «высокоскоростная» CMOS) ничуть не уступают по быстродействию микросхемам ТТЛ при сохранении почти всех преимуществ и приятных особенностей КМОП. Которые мы сейчас и разберем.
Базовый логический элемент КМОП
Схемотехника базовых логических элементов КМОП приведена на рис. 8.1. На Западе такие элементы еще называют вентилями — чем можно оправдать такое название, мы увидим далее. Они довольно близки к представлению о том, каким должен быть идеальный логический элемент.
Рис. 8.1. Схемы базовых элементов КМОП
Как можно видеть из рис. 8.1, КМОП-элементы практически симметричны, как по входу, так и по выходу. Открытый полевой транзистор на выходе (либо р -типа для логической 1, либо n -типа для логического 0) фактически представляет собой, как мы знаем из главы 3, просто резистор, величина которого для разных КМОП-элементов может составлять от 100 до 1000 Ом. Причем для дополнительной симметрии и повышения коэффициента усиления на выходе реальных элементов обычно ставят последовательно два инвертора, подобных показанному на рис. 8.1 справа (жалко, что ли транзисторов?). Не мешает даже то, что в нижнем плече для схемы «И-НЕ» стоят два транзистора последовательно (для схемы «ИЛИ-HE» они будут в верхнем плече, поскольку она полностью симметрична схеме «И-НЕ»). Обратите внимание, что выходной каскад инвертора построен не по схеме «пушпульного» каскада, т. е. это не истоковые повторители напряжения, а транзисторы в схеме с общим истоком, соединенные стоками, что позволяет получить дополнительный коэффициент усиления по напряжению.
На практике это приводит к следующим особенностям КМОП-микросхем:
• напряжение логической единицы практически равно напряжению питания, а напряжение логического нуля практически равно потенциалу «земли» (при ненагруженных выходах);
• порог переключения практически равен половине напряжения питания;
• входы в статическом режиме не потребляют тока, т. к. представляют собой изолированные затворы МОП-транзисторов;
• в статическом режиме весь элемент также не потребляет тока от источника питания.
Представляете: схема любой степени сложности, построенная с помощью КМОП-элементов, в «застывшем» состоянии или при малых рабочих частотах (не превышающих десятка-другого килогерц), практически не потребляет энергии! Отсюда ясно, как стали возможными такие фокусы, как наручные часы, которые способны идти от малюсенькой батарейки годами или sleep-режим микроконтроллеров, в котором они потребляют от 1 до 50 мкА (о нем см. главу 17 ). Другое следствие перечисленных особенностей— исключительная помехоустойчивость, достигающая половины напряжения питания.
Но это еще не все преимущества— КМОП-микросхемы базовой серии (о различных сериях см. далее), подобно многим операционным усилителям, могут работать в диапазоне напряжений питания от 3 до 15 В. Единственное, при снижении питания довольно резко (в разы) падает быстродействие.
Выходные транзисторы КМОП, как и любые другие полевые транзисторы, при перегрузке (например, в режиме короткого замыкания) работают, как источники тока: при напряжении питания 15 В этот ток для КМОП-элементов базовой серии составит около 30 мА, при 5 В — около 5 мА. Нагрузка при сохранении требований к логическим уровням (которые здесь обычно полагается иметь в пределах от 0 В до 0,1 U пит— логический ноль, и от U питдо 0,91 U пит— логическая единица) номинально ограничена величиной примерно 1 кОм (т. е. ток порядка 1 мА). Но для некоторых разновидностей (как для выходов микроконтроллеров AVR) допустимый ток значительно выше, и может достигать 20–40 мА. Причем это штатный долгосрочный режим работы таких элементов, единственное, что при этом надо проверить: не превышается ли предельно допустимое значение рассеиваемой мощности для корпуса (0,5–0,7 Вт). В противном случае, возможно, придется ограничить число выходов, одновременно подключенных к низкоомной нагрузке.
Читать дальше
Конец ознакомительного отрывка
Купить книгу