Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если входное сопротивление неинвертирующего усилителя равно практически бесконечности, то у инвертирующего оно почти в точности равно R2.

Но входы реального ОУ все же потребляют ток, хотя и очень небольшой (называемый током смещения ). Ток смещения на инвертирующем входе (в любой из двух схем) создаст падение напряжения на резисторе обратной связи и оно воспринимается как часть входного сигнала: если этот ток равен, к примеру, 0,2 мкА (казалось бы — так мало!), то при сопротивлении R1 = 1 МОм напряжение на выходе при отсутствии напряжения на входе достигнет 0,2 В. Как обычно, в подобных случаях важно не само по себе смещение, а его температурная нестабильность. Борьба с этим явлением может вестись в трех направлениях: во-первых, не следует использовать в цепочке обратной связи сопротивления большого номинала, стандартный диапазон их — от килоом до десятков килоом. Если же при необходимости сохранить достаточно высокое входное сопротивление инвертирующего усилителя при большом коэффициенте усиления применение высокоомных резисторов желательно, то предпочтительнее схема, показанная на рис. 6.7, г . В данном случае вся цепочка в обратной связи работает, как один резистор с номинальным сопротивлением 5,1 МОм, и коэффициент усиления равен 100 при входном сопротивлении 50 кОм.

Во-вторых, в схему следует вводить компенсирующий резистор R к(на рис. 6.7, a-в он показан пунктиром) — падение напряжения от тока смещения по неинвертирующему и инвертирующему входам на нем отчасти компенсируются. Тогда будет уже не столь важен сам ток смещения, сколько разница их, потребляемых по каждому из входов усилителя, которая определенно меньше каждого из токов. Кроме токов смещения, на работу реального ОУ влияет и т. н. напряжение сдвига , обусловленное неидентичностью параметров входных каскадов.

На практике, если эти явления критичны (а это далеко не всегда так), стоит подобрать более дорогой, но и более точный прецизионный ОУ. К рядовым «ширпотребовским» типам ОУ относятся старинные, но до сих пор производящиеся 140УД7 (μА741), 140УД20 (dial — сдвоенный, т. е. содержащий два ОУ в одном корпусе), LM321 (single — одинарный), LM358 (также сдвоенный), LM324 (quad — счетверенный). При этом обычные усилители (LM321, LM324, LM358) имеют широчайший диапазон напряжений питания (до ±16 В). Существует их модификация, выпускающаяся фирмой MAXIM/DALLAS, с добавлением буквы X к названию (LMX321), у которой напряжение питания снижено всего до 7 В (суммарно), однако выходное напряжение имеет полный размах (Rail-toRail) — фактически это совсем другие ОУ. Такие нюансы нередки, потому встретив знакомую микросхему, но с незнакомым индексом, обязательно следует проверить ее характеристики по документации на сайте производителя, иначе можно крупно «пролететь».

К прецизионным ОУ относятся, например, надежные и удобные МАХ478 (сдвоенный) и МАХ479 (счетверенный), также отличающиеся исключительно широким диапазоном допустимых напряжений питания: от ±2,2 до ±18 В. Они имеют высокие показатели по точности, но работают очень медленно и не допускают полного размаха напряжений по выходу. В настоящее время эти микросхемы не выпускаются (хотя их еще можно спокойно приобрести), причем адекватной замены у фирмы MAXIM нет, и лучше употреблять аналогичные изделия других фирм, например, серию AD820—AD824 фирмы Analog Devices, которая существенно быстрее и к тому же имеет полный Rail-to-Rail размах напряжения по выходу. По цоколевке они (как и большинство других ОУ) полностью взаимозаменяемы при условии идентичности корпуса. МАХ4236 — пример прецизионного усилителя, который работает при напряжениях питания до 5,5 В, зато с полным Rail-to-Rail размахом напряжения по выходу, что хорошо стыкуется с цифровыми схемами, сейчас таких ОУ выпускается очень много. Особо высокими характеристиками, в том числе по быстродействию, отличаются относительно дорогие ОУ с цифровой стабилизацией: отечественный 149УД24, а также МАХ420, МАХ430, ICL7652 и др.

Дифференциальные усилители

Кроме всего прочего, ОУ имеют замечательное свойство подавлять синфазный входной сигнал. Синфазный сигнал , в отличие от обычного, дифференциального — это напряжение, которое действует на оба входа сразу (см. также главу 3 ). Это свойство приводит не только к возможности выделять полезный сигнал на фоне значительных наводок, но и, что иногда еще важнее, к подавлению нестабильности источника питания, поскольку изменение напряжения питания равносильно действию синфазного входного сигнала.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x