Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кстати, а каковы в свете всего изложенного могут быть рекомендации нашим предпринимателям из производственной фирмы? Они совершенно аналогичны методам для обеспечения стабильности ОУ: нужно ограничить глубину обратной связи и коэффициент усиления на высоких частотах. Проще говоря, им следует при наличии запаздывания не пытаться реагировать на каждый проданный или непроданный экземпляр, а выпускать некое среднее количество в сутки, изменяя его только, когда изменился средний объем продаж за промежуток времени, значительно больший суток — это и равносильно ограничению усиления на высоких частотах.

Базовые схемы усилителей на ОУ

Анализ схемы неинвертирующего усилителя (рис. 6.7, а ) элементарно прост: исходя из приведенных правил U oc= U вх, т. е. U вх= U вых∙R2/(R1 + R2). Тогда коэффициент усиления К ус= U вых/ U вх= (R1 + R2)/R2 = 1 + R1/R2.

Единица, которая плюсуется к отношению резисторов обратной связи в выражении для коэффициента усиления — очень важное дополнение, потому что если убрать в схеме неинвертирующего усилителя резистор R2 (т. е. принять его равным бесконечности), то отношение резисторов станет равным нулю, а К ус— равным единице. Соответствующая схема, показанная на рис. 6.7, в , и есть тот самый повторитель, которого так «боялся» Видлар. Зачем она нужна, если ничего не усиливает? Эта схема обладает одним бесценным свойством: ее входное сопротивление равно практически бесконечности, а выходное — нулю (в пределах, конечно, мощности выходного каскада, как мы уже говорили). Поэтому повторитель очень часто используют в случаях, когда нужно согласовать источник сигнала с высоким выходным сопротивлением с низкоомным приемником.

Рис. 6.7. Базовые схемы на ОУ:

a— неинвертирующий усилитель; б— инвертирующий усилитель; в— повторитель; г— инвертирующий усилитель с высоким коэффициентом усиления

В неинвертирующем усилителе обратная связь носит название «обратной связи по напряжению». В отличие от него, в инвертирующем усилителе (рис. 6.7, б ) обратная связь имеет характер «обратной связи по току», и вот почему. Так как здесь неинвертирующий вход имеет потенциал «земли», то и инвертирующий тоже всегда будет иметь такой же потенциал . Будем считать, что питание у нас нормальное, симметрично-двуполярное. Тогда если в схеме рис. 6.7, б инвертирующий вход имеет всегда потенциал «земли», то от входа через резистор R2 потечет некий ток ( I вх). Так как мы договорились, что сам вход ОУ тока не потребляет, то этот ток должен куда-то деваться, и он, в полном соответствии с первым законом Кирхгофа, потечет через резистор R1 на выход ОУ. Таким образом, входной ток ( I вх) и ток обратной связи ( I ос) — это один и тот же ток. Причем потенциал выхода ОУ вынужденно станет противоположным по знаку потенциалу входа, иначе току некуда будет течь. Кстати, подавать именно нулевой потенциал на неинвертирующий вход совершенно необязательно, например, если у вас однополярный источник питания, то на неинвертирующий вход подается потенциал «искусственной средней точки».

Чему равен коэффициент усиления такой схемы? Так как U вх/R2 = U вых/R1, то К ус= U вых/ U вх= R1/R2. Без всяких дополнительных единиц, как в неинвертирующей схеме, т. е. R2 в данном случае есть необходимый элемент схемы и не может быть равным ни нулю (тогда вход ОУ просто замкнет выход источника на «землю»), ни бесконечности — за исключением того случая, если источник сигнала сам по себе представляет источник тока, а не напряжения. Вот тогда R2 из схемы можно (и нужно) исключить и подать токовый сигнал прямо на вход ОУ.

Заметьте, кстати, что похожее выражение для коэффициента усиления мы получали при рассмотрении транзисторного усилительного каскада (рис. 3.7), где усиление было равно отношению коллекторной нагрузки к сопротивлению в эмиттерной цепи. Это обусловлено тем, что в транзисторном каскаде также имеет место обратная связь (см. главу 3 ).

Подробности

Максимальное значение входного и выходного напряжений ОУ не всегда может быть равно положительному или отрицательному напряжению питания (как правило, оно меньше его на величину порядка 0,5–1,5 В). Однако многие современные изделия это все же позволяют и допустимое выходное (входное) напряжение у них достигает значений напряжения питания. Это свойство в западной технической документации обозначается как Rail-to-Rail (т. е. «от шины до шины») и на него нужно обращать внимание при выборе ОУ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x