Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис. 3.10. Вольт-амперная характеристика двустороннего стабилитрона

Отметьте, что характеристика в области пробоя все же имеет некоторый наклон, т. е. при возрастании тока через прибор Напряжение на нем не остается строго постоянным, а растет (этот эффект обусловлен т. н. дифференциальным сопротивлением). К тому же напряжение стабилизации меняется с температурой.

Как ясно из предыдущего, простейшим стабилитроном может быть обычный Диод, включенный в прямом направлении, и его часто употребляют в таком качестве. Напряжение стабилизации составит при этом, естественно, 0,6 В (для его увеличения можно включить последовательно два и более диодов). Как видно из вольт-амперной характеристики диода (см. рис. 3.1), стабильность пресловутого напряжения 0,6 В оставляет желать лучшего (и от тока зависит, и от температуры), но во многих случаях особой прецизионности и не требуется. На рис. 3.11 приведена схема ограничителя напряжения на двух диодах (если требуется более высокое напряжение ограничения, их можно заменить на стабилитроны или на один двусторонний стабилитрон). Эта схема удобна, например, для защиты высокоомного входа микрофонного усилителя.

Рис. 3.11. Схема для защиты входа микрофонного усилителя

Нормальное напряжение с микрофона составляет несколько милливольт и диоды никак не влияют на работу схемы, поскольку таким маленьким напряжением не открываются. Но если микрофон присоединен через длинный кабель, то на входе могут создаваться помехи (от промышленного оборудования, от поднесенного к неподключенному входу пальца, или, скажем, от грозовых разрядов), которые сильно превышают указанные милливольты и могут вывести из строя нежные и чувствительные микрофонные усилители. В приведенной схеме такие помехи любой полярности замыкаются через диоды и входное напряжение не может превысить 0,6–0,7 В ни при каких условиях.

Заметки на полях

У внимательного читателя может возникнуть вопрос— ведь согласно вольт-амперной характеристике и стабилитрона и диода ток при превышении соответствующего напряжения растет очень быстро, так не сгорят ли эти входные диоды при наличии высоковольтной помехи? Отвечаем — энергия помехи обычно очень мала, поэтому ток хоть и может быть достаточно велик, но на протяжении очень короткого промежутка времени, а такое воздействие и диоды и стабилитроны выдерживают без последствий.

Стабилитроны в чистом виде хороши в качестве ограничителей и маломощных источников напряжения, а для формирования действительно стабильного напряжения (например, опорного для АЦП и ЦАП) применяются интегральные стабилизаторы, которые при наличии трех выводов (вход, выход и общий) дают на выходе стабильное напряжение. Они сродни обычным стабилизаторам напряжения, которые мы будем разбирать в главе 4, но значительно более стабильны и мало зависят от температуры. Например, интегральный стабилизатор типа МАХ873, который в диапазоне 4—30 В на входе дает на выходе ровно 2,5 В, обладает еще и весьма высокой стабильностью. Даже если положить на него паяльник (тем самым нагрев его градусов до 200), то напряжение на выходе этого стабилизатора и не шелохнется. В современной интегральной технике источники опорного напряжения обычно встраивают прямо в нужные микросхемы, но часто предусматривают вход и для внешнего такого источника, потому что вы всегда можете захотеть изобрести что-нибудь получше.

Оптоэлектроника и светодиоды

Очень многие физические процессы обратимы. Типичный пример— если пластинка кварца изгибается под действием электрического поля, то принудительное изгибание пластинки должно привести к возникновению зарядов на ее концах— как и происходит в действительности, и этот эффект лежит в основе устройства кварцевых резонаторов для реализации высокоточных генераторов частоты (см. главу 9 ). Не давало покоя физикам и одно из первых обнаруженных свойств полупроводникового p-n -перехода — зависимость его Проводимости от освещения. Этот эффект немедленно стал широко использоваться в различных датчиках освещенности (фотосопротивлениях, фотодиодах, фототранзисторах), которые пришли на замену хоть и весьма чувствительным, но крайне неудобным для широкого применения вакуумным фотоэлементам. Затем появился целый класс устройств — оптоэлектронные Приборы.

Заметки на полях

Кстати, любой полупроводниковый диод в стеклянном корпусе является неплохим датчиком освещенности, его обратный ток сильно зависит от наличия света. Особенно этим отличаются старые германиевые диоды (типа Д2, Д9). Можете попробовать поэкспериментировать, только не забывайте два обстоятельства: во-первых, сам этот ток очень мал (обратное сопротивление диода весьма велико), что потребует хороших высокоомных усилителей, во-вторых, то, что от температуры этот обратный ток зависит еще больше, чем от света.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x