Результаты таких упражнений могут быть весьма неожиданными и вовсе неочевидными: скажем, при сложении двух синусоидальных колебаний с одинаковой частотой и амплитудой, как на рис. 2.3–2.4, но со сдвигом фаз в 180° (когда колебания находятся в противофазе), их сумма будет равна нулю на всем протяжении оси времени! А если амплитуды таких колебаний не равны друг другу, то в результате получится такое же колебание, амплитуда которого равна разности амплитуд исходных.
Рис. 2.4. Суммирование колебаний:
1— исходные колебания; 2— их сумма
Этот факт иногда используется для того, чтобы получить нестандартные напряжения с трансформатора с несколькими обмотками — если их обмотки подключить последовательно (начало одной к концу другой, см. главу 4 ), то напряжения суммируются, а если их включить встречно (начало одной к началу другой), то напряжения вычтутся, причем при строго одинаковых обмотках напряжение на выходе будет равно нулю!
Если у вас есть какой-нибудь низковольтный трансформатор под рукой, то можете поэкспериментировать с соединением вторичных обмоток, учитывая при этом, что начала обмоток будут иметь нечетные номера, а концы — четные. Только не ошибитесь, и не замкните что-нибудь с сетевой (первичной) обмоткой — это опасно и для вас, и для трансформатора, и для предохранителей в квартире. Так что если трансформатор вам незнаком, то необходимо сначала добыть его описание и определить, где у него сетевая обмотка.
Значения напряжения, естественно, можно измерять любым мультиметром, но вот вопрос на засыпку: что именно будет показывать вольтметр переменного тока? Ведь измеряемая величина все время, с частотой 50 раз в секунду, меняется от минимального отрицательного до максимального положительного значения, т. е. в среднем равна нулю. Тем не менее вольтметр нам покажет совершенно определенное значение. Для ответа на вопрос, какое именно, отвлечемся от колебаний и поговорим об еще одной важнейшей Величине, которая характеризует электрический ток: о мощности .
Мощность
Согласно определению, мощность есть энергия (работа), выделяемая в единицу времени . Единица мощности называется ваттом (Вт). По определению, 1 ватт есть такая мощность, при которой за 1 секунду выделяется (или затрачивается — смотря с какой стороны поглядеть) 1 джоуль энергии. Для электрической цепи ее очень просто подсчитать по закону Джоуля-Ленца: Р(ватт) = U(вольт) ∙ I(ампер). Если подставить в формулу мощности выражения связи между током и напряжением по закону Ома, то можно вывести еще два часто употребляющихся представления закона Джоуля-Ленца: P= I 2∙ Rи P= U 2/ R.
Заметки на полях
Формулу закона Джоуля-Ленца очень просто вывести из определений тока и напряжения (см. главу 1 ). Действительно, размерность напряжения есть джоуль/кулон, а размерность тока — кулон/секунда. Если их перемножить, то кулоны сокращаются и получаются джоули в секунду, что, согласно данному ранее определению, и есть мощность. Обратите также внимание на одно важное следствие из этих формул: мощность в цепи пропорциональна квадрату тока и напряжения. Это означает, что если повысить напряжение на некоем резисторе вдвое, то мощность, выделяющаяся на нем, возрастет вчетверо. Отметьте также, что от величины сопротивления мощность зависит линейно: если вы при том же источнике питания уменьшите сопротивление вдвое, то мощность в нагрузке возрастет также вдвое. Это именно так, хотя факт, что, согласно закону Ома, ток в цепи увеличится также вдвое, мог бы нас привести к ошибочному выводу, будто в этом случае выделяющаяся мощность возрастет вчетверо — если вы внимательно проанализируете формулировки закона Джоуля-Ленца, то поймете, где здесь «зарыта собака».
В электрических цепях энергия выступает чаще всего в виде теплоты, поэтому электрическая мощность в подавляющем большинстве случаев физически означает просто количество тепла, которое выделяется в цепи (если в ней нет электромоторов или, скажем, источников света). Вот и ответ на вопрос, который мог бы задать пытливый читатель еще при чтении первой главы: куда расходуется энергия источника питания, «гоняющего» по цепи ток? Ответ: на нагрев сопротивлений нагрузки, включенных в цепь. И даже если нагрузка представляет собой, скажем, источник света (лампочку или светодиод), то большая часть энергии все равно уходит в тепло: КПД лампы накаливания (т. е. та часть энергии, которая превращается в свет), как известно, не превышает нескольких процентов. У светодиодов эта величина значительно выше, но и там огромная часть энергии уходит в тепло. Кстати, из этого следует, например, что ваш компьютер последней модели, который потребляет далеко за сотню ватт, также всю эту энергию переводит в тепло — за исключением исчезающе малой ее части, которая расходуется на свечение экрана и вращение жесткого диска. Такова цена информации!
Читать дальше
Конец ознакомительного отрывка
Купить книгу