Превращение EEPROM во Flash происходило по трем разным направлениям. В первую очередь — в направлении совершенствования конструкции самой ячейки. Для начала избавились от самой «противной» стадии — «горячей инжекции». Вместо нее запись стали осуществлять «квантовым туннелированием», как и при стирании. На рис. 11.10 внизу показан этот процесс: если при открытом транзисторе подать на управляющий затвор достаточно высокое (но значительно меньшее, чем при «горячей инжекции») напряжение, то часть электронов, двигающихся через открытый транзистор от истока к стоку, «просочится» через изолятор и окажется на плавающем затворе. Потребление тока при записи снизилось на несколько порядков. Изолятор, правда, пришлось сделать еще тоньше, что обусловило довольно большие трудности с внедрением этой технологии в производство.
Второе направление — ячейку сделали несколько сложнее, пристроив к ней второй транзистор (обычный, не двухзатворный), который разделил вывод стока и считывающую шину всей микросхемы. Благодаря этому (вместе с отказом от «горячей инжекции») удалось добиться значительного повышения долговечности — до сотен тысяч, а в настоящее время и до миллионов циклов записи/стирания (правда, последнее — при наличии схем коррекции ошибок, которые замедляют работу памяти). Кроме того, схемы формирования высокого напряжения и соответствующие генераторы импульсов записи/стирания перенесли внутрь микросхемы, отчего пользоваться этими типами памяти стало несравненно удобнее, т. к. они стали питаться от одного напряжения (5 или 3,3 В).
И, наконец, третье, чуть ли не самое главное усовершенствование заключалось в изменении организации доступа к ячейкам на кристалле, вследствие чего этот тип памяти и заслужил наименование — flash («молния»), ныне известное каждому владельцу цифровой камеры или карманного МРЗ-плеера. Так в середине 1980-х назвали разновидность EEPROM, в которой стирание и запись производились сразу целыми блоками — страницами. Процедура чтения из произвольной ячейки, впрочем, по понятным причинам замедлилась — для его ускорения приходится на кристаллах flash-памяти располагать промежуточную (буферную) SRAM. Для flash-накопителей это не имеет особого значения, т. к. там все равно данные читаются и пишутся сразу большими массивами, но для микроконтроллеров может оказаться неудобным.
Тем более там неудобен самый быстродействующий вариант технологии Flash— т. н. память типа NAND (от наименования логической функции «И-НЕ»), где читать и записывать память в принципе возможно только блоками по 512 байт (это обычная величина сектора на жестком диске, также читаемого и записываемого целиком за один раз— отсюда можно понять основное назначение NAND).
В МК обычно применяют традиционную (типа NOR) flash-пэмять программ, в которой страницы относительно невелики по размерам (порядка 64—256 байт). Впрочем, если пользователь сам не взялся за изобретение программатора для такой микросхемы, он может о страничном характере памяти и не догадываться. А для пользовательских данных применяют EEPROM либо с возможностью чтения произвольного байта, либо секционированную на очень маленькие блоки (например, по 4 байта), что также для пользователя значения не имеет.
Развитие технологий flash-памяти имело огромное значение для удешевления и повышения доступности микроконтроллеров. В дальнейшем мы будем иметь дело с энергонезависимой памятью не только в виде встроенных в микроконтроллер памяти программ и данных, но и с отдельными микросхемами, позволяющими записывать довольно большие объемы информации.
Глава 12
Знакомство с микроконтроллером
Примерно в середине 70-х один из сотрудников предложил мне идею того, что, по сути дела, являлось персональным компьютером. Смысл идеи сводился к оснащению процессора 8080 монитором и клавиатурой и последующей продаже его в качестве прибора для дома. Я спросил: «И что же с ним делать?» Он ответил только, что домохозяйка, например, смогла бы хранить там кулинарные рецепты. Я не увидел в этом никакой пользы, и мы к данному вопросу больше не возвращались.
Из воспоминаний Гордона Мура, основателя Fairchild и Intel
Общее число существующих семейств микроконтроллеров оценивается приблизительно в 100 с лишним, причем ежегодно появляются все новые и новые. Каждое из этих семейств может включать десятки разных моделей. В 2002–2003 гг. в мире выпускалось ежегодно 3,2 млрд штук микроконтроллеров. Сравните — объем выпуска микропроцессоров для ПК в 2005–2006 гг. можно оценить в 200 млн единиц в год, т. е. всего около 6 % рынка. В то время как в финансовом исчислении, по данным Ассоциации полупроводниковой промышленности США, мировой объем рынка процессоров для ПК в 2006 году равнялся 33 млрд долларов, а микроконтроллеров — всего 12 млрд. Типичная цена рядового МК — порядка 2–5 долл., отдельные их представители могут стоить как существенно меньше, так и больше, но в любом случае их цена не достигает сотен долларов, как для отдельных моделей микропроцессоров от Intel и AMD.
Читать дальше
Конец ознакомительного отрывка
Купить книгу