Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис. 11.9. Устройство элементарной ячейки EPROM

Если же мы каким-то образом (каким — поговорим отдельно) ухитримся разместить на плавающем затворе некоторое количество зарядов — свободных электронов, которые показаны на рис. 11.9 внизу в виде темных кружочков со значком минуса, то они будут экранировать действие управляющего электрода, и такой транзистор вообще перестанет проводить ток. Это состояние «логического нуля».

Замечание

Строго говоря, в NAND-чипах (о которых далее) логика обязана быть обратной: если в обычной EPROM запрограммированную ячейку вы не можете открыть подачей считывающего напряжения, то там наоборот— ее нельзя запереть снятием напряжения. Поэтому, в частности, чистая NAND-память выдает все нули, а не единицы, как EPROM. Но это нюансы, которые не меняют суть дела.

Так как плавающий затвор потому так и называется, что он «плавает» в толще изолятора (двуокиси кремния, SiО 2), то сообщенные ему однажды заряды в покое никуда деваться не могут. И записанная таким образом информация может храниться десятилетиями (до последнего времени производители обычно давали гарантию на 10 лет, но на практике в обычных условиях время хранения значительно больше).

Осталось всего ничего — придумать, как размещать заряды на изолированном от всех внешних влияний плавающем затворе. И не только размещать — ведь иногда память и стирать приходится, потому должен существовать способ их извлекать оттуда. В UV-EPROM слой окисла между плавающим затвором и подложкой был достаточно толстым (если величину 50 нм можно охарактеризовать словом «толстый», конечно), и работало все это довольно «грубо». При записи на управляющий затвор подавали достаточно высокое положительное напряжение — иногда до 36–40 В, а на сток транзистора — небольшое положительное. При этом электроны, которые двигались от истока к стоку, настолько ускорялись полем управляющего электрода, что просто «перепрыгивали» барьер в виде изолятора между подложкой и плавающим затвором. Такой процесс называется еще «инжекцией горячих электронов».

Ток заряда при этом достигал миллиампера— можете себе представить, каково было потребление всей схемы, если в ней одновременно заряжать хотя бы несколько тысяч ячеек. И хотя такой ток требовался на достаточно короткое время (впрочем, с точки зрения быстродействия схемы не такое уж и короткое — миллисекунды), но это было крупнейшим недостатком всех старых образцов подобной EPROM-памяти. Еще хуже другое, то, что и изолятор, и сам плавающий затвор такого «издевательства» долго не выдерживали, и постепенно деградировали, отчего число циклов стирания/записи было ограничено нескольким сотнями, максимум — тысячами. Во многих образцах flash-памяти даже более позднего времени была предусмотрена специальная схема для хранения карты «битых» ячеек — в точности так, как это делается для жестких дисков. В современных моделях с миллионами ячеек такая карта, кстати, тоже, как правило, имеется, однако число циклов стирания/записи теперь возросло до соген тысяч. Как этого удалось добиться?

Сначала посмотрим, как осуществлялось в этой схеме стирание. В UV-EPROM при облучении ультрафиолетом фотоны высокой энергии сообщали электронам на плавающем затворе достаточный импульс для того, чтобы они «прыгали» обратно на подложку самостоятельно, без каких-либо электрических воздействий. Первые образцы электрически стираемой памяти (EEPROM, Electrically Erasable Programmable ROM — «электрически стираемое перепрограммируемое ПЗУ», ЭСППЗУ) были созданы в компании Intel в конце 1970-х при непосредственном участии будущего основателя Atmel Джорджа Перлегоса. Он использовал «квантовый эффект туннелирования Фаулера — Нордхейма» (Fowler — Nordheim). За этим непонятным названием кроется довольно простое по сути (но очень сложное с физической точки зрения) явление: при достаточно тонкой пленке изолятора (ее толщину пришлось уменьшить с 50 до 10 нм) электроны, если их слегка «подтолкнуть» подачей не слишком высокого напряжения в нужном направлении, могут просачиваться через барьер, не «перепрыгивая» его. Сам процесс показан на рис. 11.10 вверху (обратите внимание на знак напряжения на управляющем электроде).

Рис. 11.10. Процесс стирания в элементарной ячейке EEPROM

Старые образцы EEPROM именно так и работали: запись производилась «горячей инжекцией», а стирание — «квантовым туннелированием». Оттого они были довольно сложны в эксплуатации — разработчики со стажем помнят, что первые микросхемы EEPROM требовали два, а то и три питающих напряжения, причем подавать их при записи и стирании требовалось в определенной последовательности. Мало того, цена таких чипов была в свете нынешних тенденций почти запредельной. Автор этих строк сам покупал в середине 1990-х полумегабитную (т. е. 64-килобайтную) энергонезависимую память по цене 20 долл. за микросхему. Не забудьте еще про «битые» ячейки, возникновение которых в процессе эксплуатации приходилось все время отслеживать. Неудивительно, что на этом фоне разработчики предпочитали более дешевую, удобную, скоростную и надежную статическую память (SRAM), пристраивая к ней резервное питание от литиевых батареек, которые к тому времени уже достаточно подешевели.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x