Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Общее устройство памяти

Общее устройство однобитной ячейки памяти (любого типа) показано на рис. 11.5.

Рис. 11.5. Общее устройство ЗУ с однобитным выходом

Из нее видно, что память всегда имеет матричную структуру. В данном случае матрица имеет 8 х 8 = 64 ячейки. На рис. 11.5 показано, как производится вывод и загрузка информации в память с помощью мультиплексоров/демультиплексоров (вроде 561КП2, см. главу 9 ). Код, поступающий на мультиплексор слева ( х 3- х 5) подключает к строке с номером, соответствующим этому коду, активирующий уровень напряжения (это может быть логическая единица или ноль, неважно). Код на верхнем мультиплексоре ( х 0- х 2) выбирает аналогичным образом столбец, в результате к выходу этого мультиплексора подключается ячейка, стоящая на пересечении выбранных строки и столбца.

Легко заметить, что сама по себе организация матрицы при таком однобитном доступе для внешнего мира не имеет значения. Если она будет выглядеть, как 4x16 или 32x2 или даже 64x1 — в любом случае код доступа (он называется адресным кодом) будет 6-разрядным, а выход один-единственный. Поэтому всем таким ЗУ приписывается организация N x1 бит, где N — общее число битов. Для того чтобы получить байтную организацию, надо просто взять 8 таких микросхем и добавить к адресной линии еще три разряда, которыми через отдельный мультиплексор можно управлять выборкой одной из этих микросхем (для этого каждая такая микросхема имеет специальный вывод, называемый «выбор кристалла» — chip select, или CS). В данном примере мы получим в сумме 9 адресных разрядов, что соответствует емкости памяти (64 х 8 = 512 бит или 2 9). Один из битов можно использовать при этом для контроля четности, так что у нас получается хорошая модель типового модуля емкостью 256 байт, вроде тех, что были в упомянутом ILLIAC–IV. Большинство выпускаемых интегральных ЗУ также сложены из таких отдельных однобитных модулей (только в наше время уже значительно большей емкости) и имеют 8 или 16 параллельных выходов, но бывают кристаллы и с последовательным (побитным) доступом.

В качестве примера можно привести, скажем, ПЗУ с организацией 64Кх16 типа АТ27С1024 фирмы Atmel. Это однократно программируемое КМОП ПЗУ с напряжением питания 5 В и емкостью 1024 Мбита, что составляет 128 кбайт или 64 К двухбайтных слов (как мы увидим, такая организация очень удобна в качестве внешней памяти программ в контроллерах той же Atmel). Следует отметить, что в области микросхем памяти сложилась счастливая ситуация, когда все они, независимо от производителя и даже технологии, совпадают по выводам, разводка которых зависит только от организации матрицы (даже, как правило, не от объема!) и, соответственно, от применяемого корпуса (в данном случае — DIP-40). Для разных типов (RAM, ROM, EEPROM и т. д.) различается разводка выводов, управляющих процессом программирования, но можно спокойно заменять одну микросхему на другую (с той же организацией и, соответственно, в таком же корпусе) без переделки платы. Разводка выводов АТ27С1024 показана на рис. 11.6.

Рис. 11.6. Разводка выводов АТ27С1024

RAM

Традиционное название энергозависимых типов памяти, как и в случае ROM, следует признать довольно неудачным. RAM значит Random Access Memory, т. е. «память с произвольным доступом», по-русски это звучит как ЗУПВ — «запоминающее устройство с произвольной выборкой». Главным же признаком класса является не «произвольная выборка», а то, что при выключении питания память стирается. EEPROM (о которой далее), к примеру, тоже позволяет произвольную выборку и при записи, и при чтении. Но так сложилось исторически, и не нам нарушать традиции.

Устройства RAM делятся на две больших разновидности — статические и динамические ЗУПВ. Простейшее статическое ЗУПВ (SRAM, от слова «static») — это обычный триггер. И «защелки» из микросхемы 561ТМЗ, и регистры типа 561ИР2, и даже счетчик с предзагрузкой типа ИЕ11 (см. главу 9 ), — все это статические ЗУПВ с различными дополнительными функциями или без них. Регистры и доступная пользователю область ОЗУ (оперативного запоминающего устройства) микроконтроллеров, — все они также относятся к классу SRAM, и мы с ними еще познакомимся довольно близко.

По счастью, с динамическими разновидностями RAM (DRAM) нам в схемотехническом плане иметь дело не придется, но ввиду практической важности этой разновидности (на DRAM построена вся оперативная память компьютеров) стоит остановиться на ней подробнее. Устройство ячейки обычной DRAM показано на рис. 11.7, из которого видно, что ячейка состоит всего из одного транзистора и одного конденсатора Последний на схеме (рис. 11.7, а ) выглядит маленьким, но на самом деле занимает места во много раз больше транзистора (рис. 11.7, б ), только в основном вглубь кристалла. Потому ячейки DRAM можно сделать очень малых размеров, а, следовательно, упаковать их много на один кристалл, не теряя быстродействия.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x