В обедненном слое нет основных носителей, и материалы n -типа и р -типа не являются больше электрически нейтральными. Материал п-типа становится положительно заряженным вблизи перехода, а материал р -типа — отрицательно заряженным.
Обедненный слой не может стать больше. Взаимодействие зарядов быстро ослабевает при увеличении расстояния, и слой остается малым. Размер слоя ограничен зарядами противоположного знака, расположенными по обе стороны перехода. Как только отрицательные заряды располагаются вдоль перехода, они отталкивают другие электроны и не дают им пересечь переход. Положительные заряды поглощают свободные электроны и также не дают им пересечь переход.
Эти заряды противоположного знака, выстроившиеся с двух сторон перехода, создают напряжение, называемое потенциальным барьером. Это напряжение может быть представлено как внешний источник тока, хотя существует только на р-n переходе (рис. 20-2).
Рис. 20-2. Потенциальный барьер, существующий вблизи р-nперехода.
Потенциальный барьер довольно мал, его величина составляет только несколько десятых долей вольта. Типичные значения потенциального барьера — 0,3 вольта для р-n перехода в германии, и 0,7 вольта для р-n перехода в кремнии. Потенциальный барьер проявляется, когда к р-n переходу прикладывается внешнее напряжение.
20-1. Вопросы
1. Дайте определения следующих терминов:
а. Донорный атом;
б. Акцепторный атом;
в. Диод.
2. Что происходит, когда создается контакт материала n -типа и материала р -типа?
3. Как образуется обедненный слой?
4. Что такое потенциальный барьер?
5. Каковы типичные значения потенциального барьера для германия и кремния?
20-2. СМЕЩЕНИЕ ДИОДА
Напряжение, приложенное к диоду, называется напряжением смещения. На рис. 20-3 показан диод на основе р-n перехода, соединенный с источником тока. Резистор добавлен для ограничения тока до безопасного значения.
Рис. 20-3. Диод на основе р-nперехода при прямом смещении.
В изображенной цепи отрицательный вывод источника тока соединен с материалом n -типа. Это заставляет электроны двигаться от вывода по направлению к р-n переходу. Свободные электроны, накопившиеся на р -стороне перехода притягиваются к положительному выводу. Это уменьшает количество отрицательных зарядов на р -стороне, потенциальный барьер уменьшается, что дает возможность для протекания тока. Ток может течь только тогда, когда приложенное напряжение превышает потенциальный барьер.
Источник тока создает постоянный поток электронов, который дрейфует через материал n -типа вместе с содержащимися в нем свободными электронами. Дырки в материале р -типа также дрейфуют по направлению к переходу. Электроны и дырки собираются на переходе и взаимно уничтожаются. Однако в то время как электроны и дырки взаимно компенсируются, на выводах источника тока появляются новые электроны и дырки. Большинство носителей продолжает двигаться по направлению к р-n переходу, пока приложено внешнее напряжение.
Поток электронов через p-часть диода притягивается к положительному выводу источника тока. Как только электроны покидают материал р -типа, создаются дырки, которые дрейфуют по направлению к р-n переходу, где они взаимно компенсируются с другими электронами. Когда ток течет от материала n -типа к материалу р -типа, то говорят, что диод смещен в прямом направлении.
Ток, текущий через диод, смещенный в прямом направлении, ограничен сопротивлением материалов р - и n -типа и внешним сопротивлением цепи. Сопротивление диода невелико. Следовательно, подсоединение источника тока к диоду в прямом направлении создает большой ток. При этом может выделиться такое количество тепла, которого достаточно для разрушения диода. Для того, чтобы ограничить ток, последовательно с диодом необходимо включить резистор.
Диод проводит ток в прямом направлении только тогда, когда величина внешнего напряжения больше потенциального барьера. Германиевый диод требует минимальное прямое смещение 0,3 вольта; кремниевый диод — минимальное прямое смещение 0,7 вольта.
Когда диод начинает проводить ток, на нем появляется падение напряжения. Это падение напряжения равно потенциальному барьеру и называется прямым падением напряжения ( Е р). Падение напряжения равно 0,3 вольта для германиевого диода и 0,7 вольта для кремниевого диода. Величина прямого тока ( I к) является функцией приложенного напряжения ( Е ), прямого падения напряжения ( Е р) и внешнего сопротивления ( R ). Это соотношение можно получить с помощью закона Ома:
Читать дальше