ПРИМЕР: Чему равен импеданс цепи, состоящей из дросселя индуктивностью 100 миллигенри и соединенного последовательно резистора 470 ом, при приложенном к ним напряжении 12 вольт с частотой 60 герц?
Дано:
π = 3,14; f = 60 Гц; L = 100 мГн = 0,1 Гн; R = 400 Ом
ХL =?; Z =?
Решение:
Сначала найдем индуктивное сопротивление ( XL):
XL = 2πfL
XL = (2)(3,14)(60)(0,1)
XL = 37,68 Ома.
Используя XL, найдем импеданс ( Z ):
Z= √( R 2+ XL 2)
Z = √[(470) 2+(37,68) 2]
Z = 471,51 Ом.
Когда катушки индуктивности соединены последова тельно, их общее индуктивное сопротивление равно сумме индуктивных сопротивлений отдельных катушек:
X LT= X L1+ X L2+ X L3+… + X Ln
Когда катушки индуктивности соединены параллельно, обратная величина их общего индуктивного сопротивления равна сумме обратных величин индуктивных сопротивлений отдельных катушек:
1/ X LT= 1/ X L1+ 1/ X L2+ 1/ X L3+… + 1/ X Ln
16-1. Вопросы
1. Как катушки индуктивности реагируют на приложенное переменное напряжение?
2. Каково фазовое соотношение между током и напряжением в индуктивной цепи?
3. Что такое индуктивное сопротивление?
4. Чему равно индуктивное сопротивление катушки индуктивностью 200 миллигенри на частоте 10000 герц?
5. Как определяется импеданс для индуктивно-резистивной цепи?
16-2. ПРИМЕНЕНИЯ ИНДУКТИВНЫХ ЦЕПЕЙ
Индуктивные цепи широко используются в электронике. Катушки индуктивности дополняют конденсаторы в цепях фильтрации и фазового сдвига. Поскольку катушки индуктивности больше, тяжелее и дороже, чем конденсаторы, они применяются реже. Однако преимущество катушек индуктивности в том, что они обеспечивают реактивное сопротивление и пропускают постоянный ток. Конденсаторы могут обеспечивать реактивное сопротивление, но при этом они блокируют прохождение постоянного тока.
Катушки индуктивности иногда комбинируют с конденсаторами для улучшения характеристик цепи. В этом случае реактивный эффект конденсатора противоположен реактивному эффекту катушки индуктивности. Конечный результат состоит в том, что они взаимно дополняют друг друга в цепи.
Последовательные RL цепочки используются в качестве фильтров нижних и верхних частот. На рис. 16-3 показаны два основных типа фильтров. По существу эти цепи являются резистивно-индуктивными делителями напряжения. На рис. 16-3(А) изображен фильтр нижних частот.
Входное напряжение приложено к катушке индуктивности и резистору. Выходное напряжение снимается с резистора. На низких частотах реактивное сопротивление катушки низкое. Следовательно, она слабо противодействует току, и основная часть напряжения падает на резисторе.
При увеличении частоты входного напряжения индуктивное сопротивление увеличивается и оказывает большее противодействие току, так что большая часть приложенного напряжения падает на индуктивности. Чем больше падение напряжения на катушке индуктивности, тем меньше падение напряжения на резисторе, т. к. сумма падений напряжения в цепи равна приложенному напряжению. Увеличение частоты входного напряжения уменьшает выходное напряжение. Низкие частоты фильтр пропускает с небольшим уменьшением амплитуды, тогда как амплитуда напряжений высоких частот уменьшается значительно.
На рис. 16-3(Б) изображен фильтр верхних частот. Входное напряжение приложено к катушке индуктивности и резистору, а выходное напряжение снимается с катушки индуктивности. На высоких частотах индуктивное сопротивление катушки высокое, и большая часть приложенного напряжения падает на катушке. При уменьшении частоты индуктивное сопротивление уменьшается, оказывая меньшее противодействие току. Это приводит к уменьшению падения напряжения на катушке, и к увеличению падения напряжения на резисторе.
Рис. 16-3. RL фильтры.
Частота, выше или ниже которой фильтр пропускает или ослабляет сигналы, называется частотой среза . Частота среза обозначается символом f с. Частоту среза можно определить по формуле:
f c= R/2π fL
где f c— частота среза в герцах, R — сопротивление в омах, π = 3,14, f — частота в герцах, L — индуктивность в генри.
16-2. Вопросы
1. В чем неудобство использования катушек индуктивности в цепях?
Читать дальше