Я спросил, не может ли сказываться и различный уровень стресса у близнецов? За десятилетия опыта консультирования в клинике я много раз видел, как продолжительный стресс провоцирует аутоиммунные заболевания, иногда даже несколько одновременно.
— Да, в самом деле. Мы исследовали влияние классических стрессовых гормонов, включая кортикостероиды, и обнаружили, что кортикостероиды могут оказывать сильнейшее влияние на гены, причем результатом действия кортикостероидов могут быть как генетические, так и эпигенетические изменения. Есть данные в пользу того, что кортикостероиды могут влиять на эпигенотип клеток.
Я спросил, по-прежнему ли доктор Уилсон думает, что изучение изменений эпигенома для медицины не менее важно, чем изучение геномных мутаций?
— Да, я так сказал однажды и по-прежнему так считаю. Проблема в том, чтобы достичь должной степени исследованности. Эпигенетика каждой клетки сложна, а клеток множество разновидностей. И для одной клетки речь идет не просто о метилировании — а о множестве возможных модификаций гистонов.
— И о РНК-интерференции?
— Да, и о ней, конечно.
— Американцы много говорят о так называемом «раковом геноме», — сказал я, — но, похоже, скоро нам придется вести речь и о «раковом эпигеноме».
— Конечно. Проблема в том, что эпигенетика находится на уровне, пройденном генетикой двадцать лет назад. Экспериментальные исследования с технической точки зрения сложны. Нельзя провести скрининг целого генома в поисках эпигенетических маркеров таким же образом, как проводится скрининг в поисках некой генетической последовательности. Например, для исследования генов я недавно послал шестьсот образцов ДНК пациентов с ревматоидным артритом в Италию, чтобы определить четыреста тысяч генетических маркеров. А в эпигенетике мне приходится возиться с единственным геном TNF, поскольку эпигенетический анализ чрезвычайно сложен. И потому почти невозможно определять слабые различия — хотя, как мне кажется, они исключительно важны. У нас есть еще не опубликованные данные о том, что ген TNF с возрастом постепенно деметилируется. Поэтому экспрессия протеина TNF неизбежно растет с возрастом. У макрофагов деметилирование увеличивается лишь на одну целую шесть десятых процента в десятилетие. Значение небольшое, но за пять-шесть десятилетий это приводит к существенному увеличению экспрессии TNF — и риска болезни.
Замечание Уилсона о малых изменениях эпигенома показалось мне важным.
— Пластичность эпигенома, его способность меняться под воздействием окружающей среды, наверное, усложняют исследования, но и, полагаю, делают их более интересными?
— Следует помнить, что все клетки человеческого тела отличаются. Около года назад в «Нэйчур» была статья на эту тему. Авторы нашли в среднем четыре тысячи работающих генов в каждой клетке, причем у каждой случайно включалась одна из двух аллелей — копий гена, полученных от каждого из родителей. Причем то, какая именно копия включалась, менялось от клетки к клетке. Так что если анализировать возможные комбинации включенных и отключенных генов, то все клетки оказываются разными.
Я представил всю ошеломляющую сложность проблемы. За последние два десятилетия генетический скрининг развился очень сильно, появились схемы, позволяющие делать скрининг огромного количества ДНК за очень малое время. В таком же развитии нуждается и эпигенетика. Из разговора с доктором Уилсоном я вынес впечатление: такой прогресс не за горами.
Чтобы понять перспективы эпигенетики в медицине, нужно усвоить несколько простых и взаимосвязанных вещей. За пару последних десятилетий медики изо всех сил старались научиться изменять экспрессию генов, но это оказалось слишком трудным. Теперь мы знаем: экспрессию генов контролируют различные эпигенетические механизмы, на которые может влиять окружающая среда. А медицинские препараты и курсы лечения как раз и действуют таким образом, что меняют химический состав окружающей клетку среды. То есть напрашивается вывод, что возможно создать препараты, влияющие на эпигенетические механизмы. Думая об этом, я снова и снова повторял про себя вопрос, заданный мною доктору Кварреллу: «Что будет, если мы сможем свободно отключать и включать отдельные гены?»
Предположим, что посредством терапии будут отключены гены BRCA1 и BRCA2, увеличивающие риск рака груди, либо ген HLA В27, играющий ключевую роль в развитии анкилозного спондилита, либо гены DRB1, DQA1 и DQB1, подвергающие человека риску развития диабета, либо гены HLA-DQ2 и HLA-DQ8, делающие человека склонным к заболеванию целиакией? А если бы мы знали, как включать защитные гены, тем либо иным образом полезные для организма? Наше углубляющееся знание эпигенетики (возможно, вкупе с генной терапией) способно помочь в лечении болезней, обусловленных HERV, LINE или Alu -повторами и тысячами мутаций, вызывающими наследственные заболевания, да и в тысячах обычных заболеваний, с которыми каждодневно приходиться справляться докторам.
Читать дальше