В «Jeopardy!» все было совершенно по-другому. В отличие от шахмат, эта игра по самой своей природе не ограничена никакими рамками. В ней могут быть вопросы на любую тему, с которой знаком каждый образованный человек, включая историю, кинематограф, литературу, географию, массовую культуру и многое-многое другое. В таких условиях компьютер сталкивается с целым рядом чрезвычайно трудных проблем технического характера. Самая большая из них — необходимость понимать естественный язык: компьютер должен получать информацию и давать ответы в той же форме, что и обычные игроки. Еще одним особенно трудным препятствием на пути к победе в «Jeopardy!» является то обстоятельство, что это шоу не просто честная игра по правилам, но еще и увлекательное развлечение для миллионов телезрителей. Сценаристы часто намеренно добавляют в подсказки юмор, иронию и утонченную игру слов — другими словами, все те виды входных данных, которые как будто специально предназначены для того, чтобы спровоцировать компьютер на глупый ответ.
В одном документе компании IBM, в котором описывается технология Watson, указывается на следующее: «Мы имеем дело с носами, которые текут, и ногами, которые пахнут. Как "никаких шансов" может означать то же, что и "держи карман шире", а "умник" и "умница" — быть противоположными по смыслу? Как понять, когда "сгореть" — это о доме, который сгорел дотла, а когда — о человеке, который растратил весь свой потенциал? Почему, чтобы вывести данные на экране, мы должны их ввести?» {131}. Чтобы сыграть в «Jeopardy!», компьютер должен тонко чувствовать все нюансы повседневного словоупотребления, при этом демонстрируя такой общий уровень понимания смысла высказываний, который намного превосходит любые аналогичные компьютерные алгоритмы, предназначенные для погружения в пучину текста в поисках ответов. Возьмем, для примера подсказку «Забей его, и штраф тебе обеспечен» [27]. Это — подсказка из игры, которая была показана в эфире в июле 2000 г. При этом она была в самом верхнем ряду экрана с заданиями, т. е. считалась очень легкой. Попробуйте выполнить поиск по этим словам в Google, и вы получите множество страниц с информацией о различных видах штрафов за самые разные виды нарушений. (Разумеется, следует исключить из результатов точное совпадение с фразой на сайте, содержащем все вопросы из прошедших игр «Jeopardy!»). Правильный ответ — «Что такое „биток“ [28]?» — полностью ускользает от внимания алгоритма Google, отвечающего за поиск по ключевым словам [29].
Все эти трудности не были секретом для специалиста по искусственному интеллекту Дэвида Феруччи, который руководил командой, занимавшейся созданием Watson. Перед этим Феруччи возглавлял небольшую группу исследователей в IBM, разрабатывавшую систему, которая могла бы отвечать на вопросы, сформулированные на естественном языке. Феруччи и его коллеги включили свою систему, которую они назвали Piquant (англ. «пикантная»), в состав участников состязания, проводимого Национальным бюро стандартов и технологий, т. е. тем самым органом, который спонсировал выигранный Google конкурс по машинному переводу. По условиям состязания, системы должны были обработать ограниченный набор данных, содержащийся приблизительно в миллионе документов, а затем дать ответы на вопросы. При этом никаких временных ограничений установлено не было. В некоторых случаях на поиск ответа у алгоритмов уходило до нескольких минут {132}. По степени сложности это задание не шло ни в какое сравнение с «Jeopardy!», где за каждой подсказкой стоит, казалось бы, безграничный объем знаний и где у машины была бы всего пара секунд для поиска правильного ответа, иначе у нее не было бы никаких шансов на победу над лучшими игроками.
Проблема Piquant (а также ее конкурентов) была не только в скорости, но и в точности. Система выдавала правильные ответы на вопросы лишь в 35 % случаев — для такого результата было бы достаточно просто ввести вопросы в строку поиска Google {133}. Любые попытки команды Феруччи построить прототип системы для игры в «Jeopardy!» на основе проекта Piquant неизменно заканчивались неудачей. Сама мысль о том, что однажды Piquant сможет составить конкуренцию лучшему игроку «Jeopardy!» Кену Дженнигсу, казалась просто нелепой. Феруччи пришлось признать, что его команде придется начинать с нуля, а сам проект потребует масштабных исследований и разработок, на которые уйдет по меньшей мере полдесятилетия. В 2007 г. он получил одобрение от руководства IBM и принялся за разработку, как сам об этом говорит, «самой сложной интеллектуальной архитектуры, которую когда-либо видел мир» {134}. Он привлек к решению этой задачи ресурсы всей компании, собрав вместе специалистов по искусственному интеллекту из различных подразделений IBM, а также лучших университетов, включая МIT и Университет Карнеги — Меллона {135}.
Читать дальше
Конец ознакомительного отрывка
Купить книгу