Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Здесь есть возможность читать онлайн «Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: ООО «Де Агостини»,, Жанр: sci_popular, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.
Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
ЭДУАРД ГЕЙНЕ

Генрих Эдуард Гейне родился в Берлине, в Германии, 16 марта 1821 года и был восьмым из девяти детей. В 1838 году он поступил в Геттингенский университет и начал изучать математику, но в следующем году перешел в Берлинский университет, где 30 апреля 1842 года получил степень доктора. Два года спустя он стал преподавателем в университете в Бонне, а в 1856 году — в Галле. Там он читал различные лекции в разных областях вычисления и физики; его высоко ценили за ясность изложения. Гейне внес большой вклад в область логического обоснования вычисления. Он умер в Галле 21 октября 1881 года.

НА ПУТИ К БЕСКОНЕЧНОСТИ В 1860е годы Гейне доказал что способ разложения - фото 67
НА ПУТИ К БЕСКОНЕЧНОСТИ

В 1860-е годы Гейне доказал, что способ разложения периодического графика будет единственным, если он непрерывен, а также если в каждом его периоде конечное количество «прерываний». Решение Кантора подходит для обоих результатов и для случаев бесконечного количества прерываний в каждом периоде.

То есть если наблюдается непрерывность, разложение будет единственным, если в каждом периоде конечное количество прерываний — результат будет тем же. Продолжая эти рассуждения, Кантор создавал гипотезы, которые звучали примерно так: «Если в каждом периоде есть бесконечное количество прерываний, но их «немного», то разложение будет единственным». «Бесконечные, но их немного» — эта фраза может показаться противоречивой, но не для Кантора. Для него «немногое бесконечное» означало «счетное бесконечное», то есть прерывания бесконечны, но их мощность при этом должна быть меньше мощности вещественных чисел.

Впечатление, которое производит на нас писанина Кантора, просто ужасно. Читать ее — настоящая пытка.

Шарль Эрмит, французский математик, 1883 год

Итак, Кантор постулировал — и доказал это в своих «Основаниях общей теории многообразий» 1883 года, — что процесс получения производных Р', Р", Р (3), Р (4)... в определенный момент аннулируется именно в тех случаях, когда оба множества Р и Р' конечны или счетны. Надо отметить, что Кантор уже высказывал такое предположение в 1872 году. Почему на доказательство ему потребовалось десять лет? На самом деле трудность была не столько технической, сколько психологической.

Сколько этапов потребуется преодолеть, чтобы процесс Р', Р", Р (3), Р (4)... аннулировался? Это может произойти и на первом этапе, и на втором, и на третьем и так далее, но не все так просто.

Вернемся к последовательности 3,1; 3,14; 3,141; 3,1415;..., которая постепенно все больше приближается к числу π.

Обычно в таких случаях говорят, что последовательность «приближается к числу π бесконечно»; причем «бесконечно» должно пониматься потенциально, то есть числа 3,1; 3,14; 3,141; 3,1415;... стремятся к π, но никогда его не достигнут.

В ходе своих исследований Кантор нашел пример, в котором Р', Р", Р (3), Р (4)... были разными множествами, но процесс получения их производных не аннулировался ни при каком конечном количестве переходов. Так он смог выявить множество P(∞). Символ ∞, введенный Джоном Валлисом в 1655 году, обычно использовался в исчислении для обозначения потенциальной бесконечности. Так же как числа 3,1; 3,14; 3,141; 3,1415;... все больше походят на число π, к множеству F“) все больше приближаются последовательные множества Р', Р", Р (3), Р (4)... Однако в приведенном примере Кантор также обнаружил, что i x°° )состоит из чисел 0, 1 и 2, а следовательно, его производное аннулируется. Но каково же производное множества P(∞)? Если производное от Р (3)— это Р (4), а производное от Р (4)- Р (5), логично было бы предположить, что производное от P(∞) — это P(∞+1). Это означало бы, что процесс аннулируется после

∞ + 1 переходов. Что означает «∞ + 1»?

Кантор нашел случаи, в которых процесс аннулировался на этапе ∞ + 2, или ∞ + 3, или ∞ + ∞, но не мог объяснить эти символы. Точнее, признать их тем, чем они были на самом деле, ему мешал уже упомянутый психологический барьер.

НЕОБЫКНОВЕННЫЕ ОТКРОВЕНИЯ

«[...] по воле всемогущего Бога меня озарили самые удивительные, самые неожиданные идеи о теории ансамблей и теории чисел. Скажу больше, я нашел то, что бродило во мне в течение долгих лет».

В этом письме Дедекинду Кантор сообщает: в 1882 году он понял, что символы ∞, ∞ + 1, ∞ + 2, ..., ∞ + ∞, ∞ + ∞ + 1, ... являются не чем иным, как трансфинитными числами, то есть такими, которые позволяют считать за пределами натуральных чисел. В первую очередь, он назвал их ординальными и, чтобы подчеркнуть, что они являются актуально бесконечными, символ оо, ассоциирующийся с потенциальной бесконечностью, заменил греческой буквой ω.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»

Представляем Вашему вниманию похожие книги на «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»

Обсуждение, отзывы о книге «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x