Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Здесь есть возможность читать онлайн «Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: ООО «Де Агостини»,, Жанр: sci_popular, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.
Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Каким образом? Усовершенствовав метод, позволяющий показать, что рациональные числа могут организоваться в последовательность, Кантор доказал, что и множество алгебраических чисел, содержащихся в любом отрезке числовой оси, может быть представлено в виде последовательности. Вещественные числа, расположенные на том же самом отрезке, напротив, последовательностью быть не могут. Это означает, что два этих множества не могут быть одинаковыми, так как одно обладает свойством, отсутствующим у другого. Следовательно, на произвольном отрезке числовой оси все числа не могут быть алгебраическими, но не могут не быть трансцендентными. Таким образом, на каждом отрезке числовой оси есть трансцендентные числа, а на всей прямой — бесконечное количество трансцендентных чисел. Доказательство было непрямым, поэтому отметим: из рассуждений Кантора следует, что существует бесконечное количество трансцендентных чисел, хотя ученый и не привел ни одного конкретного примера.

Если бы Луивилль и Эрмит не обнародовали свои открытия, едва совершив их, то в 1874 году не было бы известно ни одного трансцендентного числа, и Кантор доказал бы существование бесконечного количества чисел неизвестного рода. Нужно отметить, что в тот момент некоторые математики отнеслись к ним с большим скепсисом. Что же произошло с числом π? В 1882 году немецкий математик Карл Луис Фердинанд фон Линдеман (1852-1939) доказал, что число π тоже является трансцендентным, и положил таким образом конец поискам квадратуры круга: стало ясно, что эта задача не может быть решена.

ПОСЛЕДСТВИЯ

На этом мы закончим разговор о статье 1874 года. Но в чем же заключались ее революционные последствия, которые Вейерштрасс посоветовал скрыть?

Вернемся к диагональному методу: с его помощью было доказано, что попытка установить взаимно однозначное соответствие между множествами простых и вещественных чисел окончится неудачей, так как всегда останутся вещественные числа без пары. Теперь вспомним пример с парами танцоров из предыдущей главы. Если бы нам заранее сказали, что вне зависимости от того, как сформируются пары, все равно останутся женщины без партнера, мы сразу заключили бы, что женщин больше, чем мужчин. Если в любом случае остаются вещественные числа без пары, это означает, что их больше, чем натуральных, но не в том смысле, что одно множество входит в другое, а в смысле их мощности. Кардинальное число (мощность) вещественных чисел («количество членов» в нем) больше, чем у натуральных чисел.

Целые, натуральные и рациональные числа обладают одинаковой мощностью, а «уровень бесконечности» вещественных чисел выше, чем натуральных. Их бесконечное множество «больше» бесконечного множества натуральных. Таким образом, Георг Кантор не только осмелился сравнить два бесконечных континуума — это возмутило бы и Аристотеля, и Галилея,— но и пришел к выводу, что некоторые бесконечности больше других. Иными словами, его доказательство касательно трансцендентных чисел таково: бесконечность множества вещественных чисел больше бесконечности алгебраических чисел, следовательно, должно быть бесконечное множество вещественных чисел, которые не являются алгебраическими, то есть бесконечные трансцендентные числа. В 1874 году эти идеи были настолько революционными, что Вейерштрасс посоветовал Кантору скрыть их. Но почему же тогда Кантор все-таки занялся ими? Из чистого противоречия?

АЛГЕБРАИЧЕСКИЕ ЧИСЛА

Число называется алгебраическим, если является решением уравнения типа a nx n+ a n-X1 n-1+ ... + a X1+ a 0= 0, где a n, a n-1,... ,a 0— целые числа, а a n≠ 0. Например, 7/5 — алгебраическое число, так как является решением уравнения 5х - 7 = 0; еще один пример алгебраического числа — √3, которое является решением уравнения х 2- 3 = 0. Это уравнение называется уравнением второй степени, так как наибольшая степень х в нем — х 2; уравнение, приведенное вначале, — уравнение первой степени (напомним, что x = x1). Мы можем доказать, что √3 является не только решением уравнения x 2- 3 = 0, но и уравнения третьей степени х 3- х 2- 3х + 3 = 0, и уравнения четвертой степени х 4- 9 = 0, и уравнения пятой степени, и шестой и так далее. Однако √3 не является решением уравнений степени меньше 2, которое при этом удовлетворяет всем вышеуказанным условиям. Самая меньшая возможная степень для √3 — вторая, поэтому говорят, что √3 — это алгебраическое число степени 2. Другими алгебраическими числами степени 2 являются, например, √2 и

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»

Представляем Вашему вниманию похожие книги на «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»

Обсуждение, отзывы о книге «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x