Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Здесь есть возможность читать онлайн «Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: ООО «Де Агостини»,, Жанр: sci_popular, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.
Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поскольку для одного числа не нашлось соответствия, наш пример взаимно однозначного соответствия между множествами натуральных и вещественных чисел является неправильным. Любая другая попытка закончится неудачей по этой же причине, следовательно, между рассматриваемыми множествами нет взаимно однозначного соответствия.

Если немного изменить этот ход рассуждений, можно доказать, что множество чисел, содержащихся в любом, даже самом маленьком отрезке числовой оси, не эквивалентно множеству натуральных чисел. Множество вещественных чисел (или чисел одного отрезка оси) нельзя представить в виде последовательности, как в 1874 году заявил Кантор. Надо заметить, что доказательство, приведенное Кантором, было не совсем таким. Диагональный метод был описан лишь в 1892 году в статье Über eine elementare Frage der Mannigfaltigkeitslehre («Об одном элементарном вопросе учения о многообразиях»).

АЛГЕБРАИЧЕСКИЕ ЧИСЛА

В статье 1874 года Кантор не говорил ни о целых, ни о рациональных числах. Он доказал, что вещественные числа не могут быть представлены как последовательность, и рассмотрел еще одно множество — множество алгебраических чисел.

Обратимся к древней и очень известной задаче о квадратуре круга, впервые сформулированной древнегреческими геометрами в V веке до н.э. Она состоит в том, чтобы при помощи линейки без делений и циркуля построить квадрат с той же площадью, как у заданной окружности.

Линейка в те времена была обычным прямоугольником для рисования отрезков, на ней не было никаких делений. Ограничительные условия этой задачи свойственны всей древнегреческой геометрии, и происходили они от элитарного представления о науке: измерениями занимались «низшие классы» — купцы и ремесленники, — а геометры и философы работали с идеальными фигурами и понятиями, не опускаясь до «второстепенного» и используя инструменты, годные для создания «чистых» фигур (прямых и окружностей) без их измерения.

В течение веков было сделано множество попыток получить квадратуру круга, но ни одна из них не увенчалась успехом. Никто не был в состоянии найти решение этой задачи; с другой стороны, не было доказано, что решение невозможно.

Если r — это радиус окружности, то ее площадь рассчитывается как πr 2. Пусть вас не удивляет, что число π связано с этой задачей. Действительно, мы можем доказать, что задача вычислить квадратуру круга эквивалентна другой: взяв за единицу измерения любой отрезок, построить при помощи линейки без делений другой отрезок, длина которого равнялась бы π раз этой единице. Другими словами, построить отрезок длины π.

То, что эти задачи эквивалентны, означает: если допустимо построить отрезок длины π, то можно построить и квадратуру круга, и наоборот. Если же одно из этих построений неосуществимо, то неосуществимо и другое. Первый важный шаг в решении этой задачи был сделан в XVIII веке, когда доказали, что для того чтобы построить отрезок с помощью линейки и циркуля, его длина должна соответствовать алгебраическому числу. Точное определение алгебраического числа слишком сложное, достаточно сказать, что таким называется число, являющееся решением уравнения определенного типа (такого, в котором задействованы целые числа). К тому же не все алгебраические числа могут быть найдены с помощью циркуля и линейки, а только отвечающие определенным требованиям.

Числа, не являющиеся алгебраическими, получили название «трансцендентных». В начале XIX века этот термин считался сугубо теоретическим, поскольку хотя и было известно, что все рациональные числа являются алгебраическими (как и некоторые иррациональные, например √2), существование трансцендентных чисел еще не стало фактом. В частности, предстояло установить, является π алгебраическим или трансцендентным числом.

Первое трансцендентное число нашел французский математик Жозеф Лиувилль (1809-1882) в 1844 году. Сейчас его называют постоянной Лиувилля. Оно начинается с 0,11000100 0000000000000001000... (первая 1 стоит на первом месте после запятой, вторая на месте 1-2 = 2, третья на месте 1 · 2 · 3 = 6 и так далее). Лиувилль обнаружил также еще несколько трансцендентных чисел, похожих на это. В 1873 году другой математик, Шарль Эрмит (1822-1901), открыл, что трансцендентным является число е (основание натуральных логарифмов).

В статье 1874 года Кантор тоже внес большой вклад в эту область, косвенно доказав, что любой отрезок числовой оси содержит бесконечное количество трансцендентных чисел.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»

Представляем Вашему вниманию похожие книги на «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»

Обсуждение, отзывы о книге «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x