Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Здесь есть возможность читать онлайн «Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: ООО «Де Агостини»,, Жанр: sci_popular, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.
Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
ЦЕЛЫЕ И РАЦИОНАЛЬНЫЕ ЧИСЛА

Продолжим рассмотрение статьи Кантора 1874 года. Мы уже знаем, что множество всех натуральных чисел эквивалентно множеству квадратных чисел. Обратимся теперь к целым числам.

В их множество входят натуральные и отрицательные числа: -1, —2, —3, —4, ... Такое множество, как и квадратные числа, эквивалентно натуральным. Чтобы доказать это, достаточно продемонстрировать взаимно однозначное соответствие этих групп.

Предположим, что мы сопоставляем Ос 0, 1 с -1, 2 с -2, 3 с -3 и так далее.

Эта попытка провалится так как в правой колонке не все числа будут целые то - фото 11

Эта попытка провалится, так как в правой колонке не все числа будут целые, то есть некоторые целые числа останутся без пары. Но тот факт, что это решение неверное, не означает, что не существует правильного разбиения на пары. Действительно, если мы соотнесем натуральные числа 0,1,2,3,4,5,6,... с целыми 0,1, -1, 2, -2,3, -3,..., то получим взаимно однозначное соответствие между ними.

Кардинальное число целых чисел всегда будет Следующая группа - фото 12

Кардинальное число целых чисел всегда будет *********... Следующая группа, которую мы должны рассмотреть, состоит из рациональных чисел. Слово «рациональный» происходит от латинского ratio, что означает и «разум», и «отношение», «деление». Таким образом, рациональные числа — это такие числа, которые можно записать в виде соотношения двух целых чисел (в математике их еще называют дробями). Рациональными являются числа

Целые числа также являются рациональными например 31 3 и 01 0 выражение - фото 13

Целые числа также являются рациональными, например 3/1 = 3 и 0/1 = 0 (выражение 0/0 не представляет никакого рационального числа, как и 1/0, 2/0, 3/0...). Следовательно, мы можем доказать, что множество рациональных чисел включает в себя и множество целых чисел, которое, в свою очередь, включает множество натуральных чисел. И тем не менее между множеством рациональных чисел, с одной стороны, и множеством натуральных и целых чисел, с другой, есть фундаментальное различие. Чтобы объяснить его суть, нам понадобится числовая ось. Это прямая (ее можно представить себе как потенциально, так и как актуально бесконечную), на которой отмечены числа. Сначала выберем произвольную точку и отметим на ней число 0, а потом еще одну, на которой отметим 1.

Каждая из этих точек на самом деле является математической то есть не обладает - фото 14

Каждая из этих точек на самом деле является математической, то есть не обладает длиной, но в данном случае, чтобы сделать их видимыми, мы обозначим их маленькими окружностями.

Выбор места для точек 0 и 1 совершенно произволен, но, сделав его, мы обусловим расположение остальных чисел. Расстояние между 0 и 1 должно равняться расстоянию между 1 и 2, а также расстоянию между 2 и 3 и так далее. То же справедливо и для отрицательных чисел.

Георг Кантор в 1870 году по прибытии в Галльский университет Университет в - фото 15 Георг Кантор в 1870 году по прибытии в Галльский университет Университет в - фото 16

Георг Кантор в 1870 году по прибытии в Галльский университет.

Университет в Галле приблизительно 1936 год Портрет Рихарда Дедекинда - фото 17

Университет в Галле, приблизительно 1936 год.

Портрет Рихарда Дедекинда Генрих Кенигсдорф 1927 год Портрет Карла - фото 18

Портрет Рихарда Дедекинда. Генрих Кенигсдорф, 1927 год.

Портрет Карла Теодора Вильгельма Вейерштрасса Конрад Фер ОТЕЛЬ ГИЛЬБЕРТА - фото 19

Портрет Карла Теодора Вильгельма Вейерштрасса. Конрад Фер.

ОТЕЛЬ ГИЛЬБЕРТА

Немецкий математик Давид Гильберт (1862-1943) придумал задачу, в которой упрощенно излагается одно из следствий теории Кантора. Представим себе отель, в котором есть бесконечное количество комнат, обозначенных номерами 1, 2, 3, 4, 5 и так далее. В каждом номере есть постояльцы, которых мы для удобства так же обозначим числами 1, 2, 3, 4, 5 и так далее. Однажды в отель приезжает новый гость, назовем его Господином 0, но все номера заняты, а по правилам отеля двое людей не могут занимать один номер. Господин 0 уже собирается уходить, когда ему предлагают такой вариант: он поселится в номере 1, гость 1 — в номере 2, гость 2 — в номере 3 и так далее. Таким образом, Господин 0 сможет остановиться в отеле, и никто не останется без комнаты.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»

Представляем Вашему вниманию похожие книги на «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.»

Обсуждение, отзывы о книге «Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x