Теоретически мы можем отличить биологические источники метана от абиотических. Молекула метана состоит из атома углерода и четырех атомов водорода. Жизнь на Земле имеет дело главным образом с углеродом-12 — наиболее распространенной формой углерода с шестью нейтронами в ядре. Альтернативой ему является углерод-13, атом которого тяжелее благодаря наличию дополнительного нейтрона и потому требует больше энергии для участия в реакциях. Неорганический материал на Земле содержит в 89,9 раз больше углерода-12, чем углерода-13, тогда как у живой материи этот показатель выше — 95. Разница не так велика, но ее можно обнаружить. Зонд «Гюйгенс» на Титане провел измерение соотношения двух типов углерода в метане, содержащемся в атмосфере спутника, получив значение 82,3, которое намного ближе к величине, характерной для неорганического вещества на Земле. Если бы мы научились различать атомы углерода в метане в атмосфере экзопланет, у нас бы появился маркер, указывающий на возможное присутствие жизни.
В качестве более надежного биомаркера может выступать комбинация молекул. Когда в атмосфере присутствуют и кислород, и метан, они объединяются, образуя углекислый газ. Если наблюдается высокое содержание и того и другого, это означает, что существует источник, обеспечивающий постоянное наполнение атмосферы этими двумя молекулами, не давая ей достигнуть равновесия. Такие комбинированные биомаркеры намного реже имеют абиотическое происхождение, но все-таки полностью исключать такую возможность нельзя. Например, при наблюдении титаноподобный спутник, обращающийся вокруг богатой кислородом планеты, может показаться одиноким миром со смешанной метано-кислородной атмосферой.
В качестве дополнительного признака влияния живых форм на атмосферу могут служить сезонные изменения в ее составе на протяжении планетного года. Когда зима на Земле сменяется весной, биосфера перерождается в результате цветения растений в условиях более теплой погоды. Это оказывает заметное влияние на уровень углекислого газа в нашей атмосфере. Согласно данным измерений, проводимых в обсерватории «Мауна-Лоа» на Гавайях с 1958 г., уровень углекислого газа не только неуклонно повышается в результате глобального изменения климата, но и ежегодно претерпевает изменения в результате смены сезонов.
С приходом весны и увеличением количества солнечного света на фотосинтезирующих растениях распускаются новые листья, которые поглощают больше углекислого газа из воздуха. С наступлением зимы листва отмирает, и уровень углекислого газа вновь поднимается. Разумеется, весна на одной половине Земли сопровождается зимой на другой. Поэтому для заметного изменения уровня углекислого газа необходимо, чтобы в северном и южном полушариях была разная площадь покрытых растительностью территорий. На Земле в Северном полушарии произрастает больше растений, чем в Южном, поэтому смена весеннего и зимнего сезонов в северном полушарии планеты сопровождается ежегодными колебаниями уровня углекислого газа. Равномерное распределение растительности по поверхности планеты вряд ли возможно, а значит, объяснить наличие такого цикла, выявляемого по результатам наблюдения за движением планеты вокруг ее звезды, без наличия на ней биологического вещества достаточно трудно.
Зеленый всплеск, красный край
Атмосфера — не единственная характеристика планеты, на которой сказывается присутствие жизни. Еще один потенциальный биомаркер — цвет планеты, или, говоря более научным языком, длины волн излучения, которые преобладают в отражаемом планетой свете. Мы видим зеленый цвет на поверхности Земли благодаря широкому распространению фотосинтезирующих растительных форм жизни, отражающих зеленый свет. Все дело в хлорофилле в клетках растений, который рассеивает свет с длиной волны около 500 нм [48] 1 нм = 0,000 000 001 м.
, но при этом поглощает попадающий на него свет с чуть меньшими и большими длинами волн. Кроме того, растения на нашей планете эффективно отражают свет с длинами волн, превышающими те, которые воспринимаются нашими глазами как цвет. Излучение в инфракрасном диапазоне с длиной волны около 700–800 нм и более либо отражается, либо беспрепятственно проходит сквозь растение. Эту границу называют красным краем . Благодаря такой отражающей способности растения прекрасно видны при инфракрасной съемке, что позволяет изучать растительный покров со спутников.
Читать дальше
Конец ознакомительного отрывка
Купить книгу