Как это ни странно, еще одним возможным способом выявления экзоспутников может стать прямое наблюдение. Мы знаем, насколько трудно различить тусклый силуэт планеты на фоне пышущей адским пламенем звезды. Кажется, что поиски спутника в этом случае заведомо обречены на провал. Однако это далеко не всегда так. Благодаря дополнительному нагреву со стороны планеты спутники могут оставаться горячими и светиться в течение длительного времени, даже когда они находятся вдали от звезды. Чувствительные телескопы последнего поколения вполне могут зафиксировать эти аномальные тепловые детали в инфракрасном спектре.
Комбинации спутников и каменистых миров, которые мы начинаем обнаруживать, открывают широкие возможности для поиска жизни. Но как мы узнаем, что где-то там живут наши внеземные соседи?
«Как вы думаете, сколько времени нам понадобиться, чтобы найти жизнь на другой планете?»
С этим вопросом ко мне обратился Мишель Майор, исследователь, открывший экзопланету 51 Пегаса b и положивший начало науке, которой посвящена эта часть книги. Незадолго до того, в 2015 г., он получил престижную премию Киото за достижения в области фундаментальных наук. На торжествах по случаю вручения награды обсуждались различные аспекты изучения экзопланет, а во время перерыва на кофе Майор любезно выслушал мой скомканный рассказ о том, чем я занимаюсь. Заданный им вопрос показывает, что тема поиска внеземной жизни по-прежнему ставит в тупик даже первопроходцев изучения внесолнечных планет.
Когда мы начали находить небольшие планеты, движущиеся вокруг своих звезд по орбитам, которые потенциально могут обеспечивать умеренную температуру на их поверхности, мы стали все чаще сравнивать их с Землей, пытаясь обнаружить сходство. Может ли какая-то из этих планет не просто быть пригодной для жизни, но и на самом деле быть населена живыми существами? Первый шаг на пути к ответу — задуматься, какие формы жизни мы можем обнаружить с наибольшей вероятностью. Учитывая значительное разнообразие условий, в которых могут выживать микроорганизмы, предполагается, что микробы вне Земли должны встречаться намного чаще, чем разумная жизнь. Но как найти то, что не способно самостоятельно заявить о своем существовании?
«Обоснованное предположение»
Допустим, мы нашли твердотельную планету размером с Землю, которая обращается вокруг звезды в зоне умеренных температур. Планета находится так далеко, что никакой космический аппарат не доберется до нее в течение нашей жизни, но при этом у нас есть возможность изучать ее атмосферу при прохождении по диску звезды. Как определить, что на этой планете развилась жизнь?
Идеальное решение — наблюдать за планетой, о наличии жизни на которой нам достоверно известно, и выявить ее признаки. По счастливой случайности такая возможность представилась аппарату «Галилео» на его пути к Юпитеру. Согласно первоначальному плану NASA, зонд должны были запустить из грузового отсека космического челнока «Атлантис». С помощью мощного разгонного блока «Галилео» мог быть выведен на прямую траекторию к внешней части Солнечной системы. Однако из-за трагической гибели «Челленджера» в 1986 г. были введены новые строгие правила безопасности, запрещавшие доставку полностью заправленного топливом блока внутри космического челнока к месту пуска. В итоге запущенный с «Атлантиса» в 1989 г. «Галилео» получил значительно меньшее ускорение, чем ожидалось.
Чтобы аппарат все-таки смог добраться до Юпитера, его направили по траектории, проходившей вблизи Венеры и Земли. Пролетая на небольшом расстоянии, аппарат получил дополнительное ускорение от гравитации планет, выступивших в роли ракеты-носителя. Такие разгоны называют гравитационными маневрами и часто используют для сокращения количества топлива, требуемого для того, чтобы добраться до какой-либо области в межпланетном пространстве.
Для «Галилео» сближение с Землей не прошло зря. Повернув камеры в нашу сторону, космический аппарат в течение некоторого времени наблюдал за Землей из космоса. Если бы мы не смогли сделать вывод о наличии на Земле бьющей ключом жизни с расстояния всего лишь 1000 км, надеяться на раскрытие тайн далеких миров, находящихся в десятках световых лет от нас, вряд ли бы стоило. Но что именно мы искали и увидели?
Жизнь — не пассивный довесок к нашей планете. Такие процессы, как фотосинтез, дыхание и разложение, оставляют свой след в составе атмосферы. «Галилео» должен был найти нечто такое, что все формы жизни — от разумных существ до микроорганизмов — вырабатывают в количествах, которые позволят обнаружить это либо в атмосфере, либо фиксируя изменения в глобальных характеристиках планеты. Иными словами, целью «Галилео» были биомаркеры.
Читать дальше
Конец ознакомительного отрывка
Купить книгу