1 ...7 8 9 11 12 13 ...35 В искусственном «глазе» стеклянные микролинзы покрывают полусферу из эпоксидной смолы, внутри которой проходят микроканалы - волноводы – они заменяют нервные волокна насекомого, передающие оптический сигнал от каждой фасетки мозгу (рис.1.23в). Изготовление волноводов и было самой нетривиальной частью задачи. Для этого сплошную «заготовку» объектива пришлось облучать ультрафиолетовым светом – чтобы, преломляясь в линзах, свет проделал каналы, подходящие в точности к каждой из них.
Фасеточная камера, говорят разработчики, может понадобиться медикам и ученым, изучающим труднодоступные полости живых существ или искусственных тел. Кроме того, исследованием заинтересовалось военное агентство DARPA, согласившееся его финансировать. Известно, что прежде эта организация поддерживала проект Micromechanical Flying Insect, целью которого было создание полноценного «механического насекомого».

Рис. 1.23. Глаз насекомого
Пример 1.24. Робот - змея
По аналогии с движением змеи группа специалистов из University of Michigan разработала робот, передвигающийся как змея (рис. 1.24). Его назвали OmniTread. Движитель OmniTread занимает 80% его поверхности. Роботом управляет оператор с помощью жеста. Робот способен двигаться по канавам, трубам и стенам.
Рис. 1.24. Робот - змея
Пример 1.25. Касатка
По аналогии с касаткой (рис. 1.25а) было разработано быстроходное судно (рис. 1.25б). Двое изобретателей из США и Новой Зеландии сконструировали бионического дельфина, который очень похож на свой природный прототип (рис. 1.25в). Он приводится в движение с помощью мотора от обычного водного мотоцикла «Ямаха». По словам одного из изобретателей, новозеландца Роба Иннеса, мощность двигателя – 110 лошадиных сил. Он оборудован трансмиссией фирмы Velvet Drive с передаточным числом 2 к 1. Искусственный дельфин в точности повторяет манеру движения своего биологического прототипа и может даже выпрыгивать из воды. Бионика – наука, которая совмещает биологию и технику. От биологии были взяты аэродинамические параметры, которые были максимально приближены к природным.
Искусственный дельфин может развивать скорость до 50 км/ч и кратковременно нырять на глубину, при которой на поверхности виден только верхний плавник дельфина, чтобы потом выпрыгнуть из воды (все как в природе).
Рис. 1.25. Судно - касатка
Пример 1.26. Перистальтический насос
Перистальтический насос – аналог кишечника живого организма. Этот насос предназначен для перекачивания пульпы – вязкого вещества и абразивных пульпообразных сред. Насос (рис. 1.26) содержит шланг (гибкий цилиндр), расположенный в подковообразном корпусе, и три ролика, закрепленные на роторе. При вращении ротора ролики поочередно подводятся к шлангу, постепенно пережимая его и прокатываясь по корпусу. При сплющивании шланга ролик передвигает впереди себя перекачиваемую среду. Гибкий шланг позади ролика восстанавливает свою первоначальную форму и всасывает новую порцию жидкости за счет создаваемого разряжения. Затем подходит следующий ролик и вновь пережимает шланг, перекатываясь по корпусу. При вращении роторов все процессы в насосе повторяются. Основным преимуществом данного семейства насосов является тот факт, что перемещаемая жидкость контактирует только с выбранной Вами рабочей трубкой, а не с насосом, что позволяет продлить жизнь насоса и не загрязняет перемещаемую жидкость.

Рис. 1.26. Перистальтический насос
Пример 1.27. Судно - кальмар
Кальмар, как известно, передвигается резкими толчками, выбрасывая назад воду. Судно приводится в движение также реактивной отдачей. Пар выталкивает воду из трубы, направленной к корме судна. От этого толчка судно получает импульс. Оставшийся в трубе пар конденсируется, давление в котле падает, и всасывается очередная порция воды. Теперь котел снова готов к рабочему циклу. Разумеется, это лишь грубая схема, сама конструкция несколько сложнее. Достоинства такого двигателя – отсутствие движущихся частей. Модель этого судна легко построить. Простейший корпус из жести, закрепленная на нем баночка из - под гуталина, две впаянные в корпус трубочки и спиртовка из крышки от бутылки с лимонадом (рис. 1.27). 17
Читать дальше
Конец ознакомительного отрывка
Купить книгу