Представим себе в изотропной среде точечный источник силы S 0, что эквивалентно целому числу S 0некоторых единичных источников. Истекающая жидкость будет двигаться так, как показано на рис. 2.
Рис. 2
Если источник действует достаточно долго и распределение жидкости установилось, то в каждый объем в единицу времени втекает ровно столько жидкости, сколько вытекает. При этом, как легко понять, скорость элемента жидкости на расстоянии r от источника будет равна u= S 0/4πr 2 . Представим теперь воображаемую трубку тока жидкости. Она пересекается в каждом месте воображаемой перпендикулярной поверхностью равного давления. Так, на рис. 3 во всех точках поверхности 1 давление равно p 1, в точках поверхности 2 — давление p 2и т.д. Представим себе в этой картине единичный кубический объем жидкости, движущийся перпендикулярно к его граням σ 1и σ 2(см. рис. 4). Поскольку сопротивление, испытываемое таким объемом, равно R = ku, то разность давлений на гранях Δp равна —ku. Отсюда следует, что изменение давления на единицу длины вдоль каждой линии тока дается выражением:
Поэтому:
Теперь, вспоминая форму закона Кулона, можно отождествить давление p(r) с потенциалом φ(r), скорость u(r) — с напряженностью электрического поля (или электродвижущей силой — э. д. с.) Е, источник S 0— с электрическим зарядом, коэффициент к естественно связывается с диэлектрической проницаемостью среды ε. При наличии многих источников в разных точках пространства в рамках сформулированной аналогии получится правильное распределение полей и потенциалов. В итоге Максвелл воспроизводит хорошо известные законы электростатики с помощью механической (точнее — гидродинамической) модели, в которой нет никакого дальнодействия.
Рис. 3
Рис. 4
Вся физика, относящаяся к этому кругу вопросов, описывается одним уравнением:
где ρ(r) — плотность зарядов, div — стандартная дифференциальная операция, выделяющая из векторного поля E часть, связанную с расходимостью из точки. В статическом случае, когда поле E не зависит от времени, возможна запись E в виде градиента некоторой скалярной функции (потенциала):
E = —grad φ(r).(1)
Все это уже было хорошо известно до Максвелла. Уравнение (А), где вместо поля Е введен потенциал по формуле (1), называется уравнением Пуассона.
Переходя к рассмотрению магнитных явлений и взаимодействия магнитов и токов, Максвелл уже не находит столь простой аналогии. Он становится на путь перевода существующих эмпирических закономерностей на язык дифференциальных уравнений, предполагая, что магнитные величины, в том же смысле, как электрические, как-то могут быть интерпретированы в будущем в терминах гидродинамики новой, магнитной жидкости. Но конкретный образ этой жидкости еще предстоит найти.
В этой работе возникает двойственность, которая будет постоянно прослеживаться дальше. Стремление к механическим аналогиям привязывает Максвелла к своему веку — нельзя же в самом деле писать уравнения для объекта, который явно имеет материальные проявления, в частности, переносит энергию, а с другой стороны, есть «ничто», пустота. В то же время предмет исследования так или иначе не влезает в принятую механическую картину, и Максвеллу приходится следовать логике самих уравнений, оставляя мысль о материальном носителе и признавая неполноту аналогий. Таким образом, то, что он говорил о принципах, на которых должна строиться правильная теория остается (к счастью?) недостижимым идеалом.
Без связи с конкретной моделью Максвелл приходит к дифференциальной формулировке закона индукции Фарадея, но сохраняет надежду, что «при внимательном изучении свойств упругих тел и движения вязких жидкостей» ему удастся найти соответствующий механический образ. Пока же он вводит абстрактный символ A(x,t) — векторный потенциал в современной терминологии — и называет его «электротонической интенсивностью», т.е. мерой «электротонического состояния». Такое гипотетическое состояние вещества было изобретено Фарадеем. Оно проявляется только через свои изменения во времени и пространстве. Сейчас выглядит таинством, как смог Фарадей увидеть эвристическую ценность в таком странном действии — введении ненаблюдаемой характеристики. На первый взгляд не меньшим чудом кажется то, что именно в этом пункте туманным рассуждениям Фарадея Максвелл смог придать однозначную математическую интерпретацию. Максвелл постулирует закон: «Полная электротоническая интенсивность вдоль границы элемента поверхности служит мерой количества магнитной индукции, проходящей через этот элемент или, другими словами, мерой числа силовых линий, пронизывающих данный элемент». В дифференциальной форме (для бесконечно малых элементов поверхности) этот закон записывается в виде:
Читать дальше