Чарльз Сейфе - Ноль - биография опасной идеи

Здесь есть возможность читать онлайн «Чарльз Сейфе - Ноль - биография опасной идеи» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: АСТ, Жанр: sci_popular, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Ноль: биография опасной идеи: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Ноль: биография опасной идеи»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга — история цифры 0, одного из самых необычных изобретений человечества. Споры вокруг этого невинного с виду круглого значка потрясали самые основы науки и религии, не раз приводили к войнам. Легендарные мыслители, от Пифагора до Эйнштейна, пытались разгадать тайну ноля. Древние календари и последние достижения астрофизики, вавилонские глиняные таблички и поиски «теории всего» — обо всем этом в книге «Ноль: биография опасной идеи». Это книга для каждого, кого интересует история математики и культуры, передовые идеи современной науки.

Ноль: биография опасной идеи — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Ноль: биография опасной идеи», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как только математики и физики сумели преодолеть проблемы, связанные с делением на ноль в дифференциальном и интегральном исчислении, и ввести его в рамки логики, ноль вернулся в уравнениях квантовой механики и общей теории относительности и снова замарал науку бесконечностью. Перед нолями Вселенной логика пасует. Квантовая теория и теория относительности распадаются на части. Для решения проблемы ученые стараются снова изгнать ноль и унифицировать правила, которым подчиняется космос.

Если им это удастся, они поймут законы Вселенной. Мы познаем физические закономерности, управляющие всем до границ пространства-времени, от возникновения космоса до его конца. Люди поймут космический каприз, вызвавший Большой взрыв. Мы поймем замысел Бога. Однако на этот раз победить ноль может оказаться не так легко.

Теории, объединяющие квантовую теорию и общую теорию относительности, описывающие центр черной дыры и сингулярность Большого взрыва, настолько далеки от эксперимента, что может оказаться невозможным выяснить, какая из них правильна, а какая — нет. Доводы сторонников теории струн и космологов могут быть математически безупречными, но в то же время столь же бесполезными, как философия Пифагора. Математические теории могут быть красивыми, последовательными и как будто объясняющими природу Вселенной — и быть совершенно ошибочными.

Все, что известно ученым, — это что космос родился из ничего и вернется в ничто, из которого возник.

Вселенная начинается с ноля и кончается нолем.

Приложение A

Зверь, овощ или министр?

Пусть числа a и b оба будут равны 1. Поскольку они равны между собой,

b 2= ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1).

Поскольку a равно самому себе, очевидно, что

a 2= a 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2).

Вычтем уравнение (1) из уравнения (2). Это дает

a 2— b 2= a 2— ab . . . . . . . . . . . . . . . . . . . . . . . . . . (3).

Мы можем преобразовать обе части уравнения:

a 2— ab = a(a — b); a 2— b 2= (a + b)(a — b).

Тут нет ничего сомнительного. Эти выкладки совершенно верны. Подставьте в них числа и убедитесь сами. Подставив эти значения в уравнение (3), получаем:

(a + b)(a — b) = a(a — b) . . . . . . . . . . . . . . . . . . . . (4).

Пока все хорошо. Теперь разделим обе части равенства на (a — b) и получим

а + b = a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5).

Вычтем из обоих частей a и получим

b = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6).

Однако в самом начале этого рассуждения мы задали b = 1, и это значит, что

1= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7).

Это важный результат. Рассуждаем дальше. Нам известно, что Уинстон Черчилль имел одну голову. Но, согласно равенству (7), один равен нолю, значит, Черчилль головы не имел. У него не было набора лиственных побегов, значит, он имел один набор лиственных побегов. Далее умножим обе части равенства (7) на 2 и получим

2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8).

У Черчилля было две ноги, следовательно, он не имел ног. У Черчилля было две руки, следовательно, он не имел рук. Теперь умножим равенство (7) на размер талии Черчилля в дюймах. Значит,

размер талии Черчилля = 0 . . . . . . . . . . . . . . . . . . . . . . . . (9).

Это значит, что Черчилль сужался до ноля. А теперь посмотрим, какого цвета был Уинстон Черчилль? Возьмем любой световой луч, отраженный от него, и выберем фотон. Умножим равенство (7) на длину волны и получим:

длина волны фотона Черчилля = 0 . . . . . . . . . . (10).

Однако умножив равенство (7) на 640 нанометров, мы видим, что

640 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(11).

Соединив равенства (10) и (11), мы получим, что длина волны фотона Черчилля = 640 нанометров.

Это означает, что данный фотон, как и любой другой, исходящий от мистера Черчилля, — оранжевый. Таким образом, Уинстон Черчилль имеет ярко-оранжевый цвет.

Суммируя полученные результаты, можно сказать, что мы математически доказали, что Уинстон Черчилль не имеет рук и ног, вместо головы у него пучок зелени, он сужается до точки и имеет оранжевый цвет. Ясно, что Уинстон Черчилль — морковка. (Есть и более простой способ доказать это. Добавление 1 к обеим частям уравнения (7) дает равенство 2 = 1. Уинстон Черчилль и морковка — разные вещи, поэтому они — одно и то же. Однако такое заключение менее удовлетворительно.)

Что не так в этом доказательстве? Только один шаг имеет порок — тот, благодаря которому мы переходим от уравнения (4) к уравнению (5). Мы делим на (a — b). Однако осторожно! Поскольку и a , и b равны 1, a — b = 1 — 1 = 0. Мы делили на ноль и в результате получили смешное равенство 1 = 0. Отсюда следует, что мы можем доказать любое утверждение, независимо от того, верно оно или ложно. Вся система математики развалилась.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Ноль: биография опасной идеи»

Представляем Вашему вниманию похожие книги на «Ноль: биография опасной идеи» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Ноль: биография опасной идеи»

Обсуждение, отзывы о книге «Ноль: биография опасной идеи» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x