Тобиас Данциг. «Числа — язык науки»
Проклятие Зенона висело над математикой два тысячелетия. Казалось, что Ахиллес обречен вечно преследовать черепаху, никогда ее не догоняя. В простой загадке Зенона скрывалась бесконечность. Греки были остановлены бесчисленными шагами Ахиллеса. Им не приходило в голову сложить вместе бесконечные части, хотя величина шагов Ахиллеса приближалась к нолю. Греки едва ли могли сложить шаги нулевой величины, не имея понятия ноля. Впрочем, когда Запад принял ноль, математики начали приручать бесконечность и закончили гонку Ахиллеса.
Несмотря на то, что последовательность Зенона имеет бесчисленные члены, мы можем сложить их и все же остаться в области конечных чисел: 1 + 1/ 2+ 1/ 4+ 1/ 16+… = 2. Первым человеком, проделавшим такой трюк — сложение бесконечного числа членов для получения конечного результата, — был британский логик XIV века Ричард Суисет. Он взял последовательность 1/ 2, 2/ 4, 3/ 8, 4/ 16, …, n/ 2 n, сложил ее члены и получил 2. В конце концов числа, составлявшие последовательность, все больше и больше приближались к нолю; по наивности можно было бы предположить, что это обеспечит конечность их суммы. Увы, бесконечность вовсе не так проста.
Примерно в то же время, когда Суисет получит свой результат, Николя Оресм, французский математик, попробовал сложить другую бесконечную последовательность чисел — так называемую гармоническую серию: 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ 1/ 6+ … Как и в случаях последовательностей Зенона и Суисета, все члены данной последовательности все больше и больше приближаются к нолю. Тем не менее когда Оресм попытался сложить их, он обнаружил, что сумма становится все больше и больше. Несмотря на то, что отдельные члены последовательности стремятся к нолю, сумма делается бесконечно большой. Оресм показал это, сгруппировав члены: 1/ 2+ ( 1/ 3+ 1/ 4) + ( 1/ 5+ 1/ 6+ 1/ 7+ 1/ 8) +… Первый член новой последовательности очевидно равен 1/ 2; второй больше 1/ 2, так как больше, чем ( 1/ 4+ 1/ 4); третий тоже больше 1/ 2, так как больше, чем ( 1/ 8+ 1/ 8+ 1/ 8+ 1/ 8)… и так далее. Вы продолжаете складывать 1/ 2, 1/ 2, 1/ 2 …и сумма становится все больше и больше — до бесконечности. Хотя члены последовательности стремятся к нолю, они стремятся недостаточно быстро. Сумма бесконечной последовательности может быть бесконечно большой, даже если ее члены стремятся к нолю. Однако это еще не самое странное свойство бесконечно большой суммы. Ноль сам не застрахован от странной природы бесконечности.
Представьте себе следующую серию: 1 — 1 + 1 — 1 + 1 — 1 + 1… Нетрудно увидеть, что сумма этой серии равна нолю: ведь (1 — 1) + (1 — 1) + (1 — 1)… — то же самое, что 0 + 0 + 0 + 0 +…, что, несомненно, дает в сумме ноль. Однако внимание! Сгруппируйте члены серии иначе: 1 + (–1 + 1) + (–1 + 1) + (–1 + 1) +… Это то же самое, что 1 + 0 + 0 + 0 +… и явно равняется 1. Одна и та же сумма бесконечного числа нолей одновременно равна 0 и 1! Итальянский священник отец Гвидо Гранди даже использовал эту серию для доказательства того, что Бог мог создать Вселенную (1) из ничего (0). На самом деле такая серия в сумме может давать что угодно. Чтобы сумма стала равна 5, используйте 5 и –5 вместо 1 и –1, и можно будет доказать, что 0 + 0 + 0 + 0 +… равно 5.
Сложение бесконечного числа объектов друг с другом может приводить к странным и противоречивым результатам. Иногда, когда члены стремятся к нолю, сумма оказывается конечной, прекрасным, нормальным числом вроде 2 или 53. В других случаях сумма делается бесконечно большой. А сумма бесконечной серии нолей может равняться вообще чему угодно. И все это происходило одновременно. Происходило нечто странное, и никто не знал, как же обращаться с бесконечностью.
К счастью, физический мир проявил больше здравого смысла, чем мир математический. Складывать бесконечное число предметов друг с другом удается вполне успешно при условии, что вы имеете дело с чем-то реальным, например, ищете объем бочки вина. 1612 год оказался знаменательным для вина.
Иоганн Кеплер — тот самый, который открыл, что планеты движутся по эллипсам, — провел этот год, заглядывая в винные бочки, потому что понял, что методы виноделов, оценивающих объем бочек, очень грубы. Чтобы помочь торговцам вином, Кеплер расколол — в уме, конечно, — бочку на бесконечное число бесконечно малых кусочков, а потом сложил их, чтобы определить объем. Это может показаться странным способом измерения бочки, но идея оказалась блестящей.
Чтобы несколько упростить проблему, представим себе двумерный, а не трехмерный объект — треугольник. Треугольник на рис. 23 имеет высоту 8 и основание 8. Поскольку площадь треугольника равна половине произведения основания на высоту, она равна 32.
Читать дальше
Конец ознакомительного отрывка
Купить книгу