Но некоторые важные различия все же имеются.
В конце 50-х годов работавшие в США китайские физики Ли, Янг и By сделали сенсационное открытие. Оказалось, что на малых расстояниях теряется различие между правым и левым.
Из нашей повседневной практики мы хорошо знаем о зеркальной симметрии — симметрии правого и левого. Между нашим пространством и зазеркальем нет принципиальных различий, и когда мы смотрим на себя в зеркало, мы совершенно уверены в том, что изображение полностью соответствует оригиналу. В микромире все иначе. Как это ни странно, но часть объектов и событий там просто не имеет зеркального отражения. Например, в природе нет частицы, которая была бы зеркальным отражением нейтрино. Другими словами, в микромире не у каждого «правого» есть «левое».
В 1964 г., был открыт еще более удивительный факт. Два молодых американских физика, Вэл Фитч и Джеймс Кронин, изучали нарушение зеркальной симметрии в распадах К-мезонов — короткоживущих частиц, которые можно получить с помощью мощного ускорителя. Распады фотографировались и тщательно измерялись. Ничего неожиданного не было замечено — опыт протекал так, как и предсказывала теория, и его материалы после обработки были сданы в архив. Однако спустя полгода физикам пришла в голову «сумасшедшая» мысль: а что если в микромире нельзя противопоставлять не только правое левому, но и будущее прошлому? В классической механике Ньютона для каждого процесса можно найти точно такой же, но протекающий в обратном порядке — так сказать, зеркально отраженный во времени. Если в обычном, прямом процессе человек вошел в комнату, то в обратном он, пятясь, выйдет из нее. И так для любого явления. А вот как будет в микромире?
Экспериментальный материал был заново пересмотрен, и среди двух десятков тысяч фотографий Фитч и Кронин, к своему удивлению и радости, обнаружили около нескольких десятков с реакциями, которые никак не должны были бы происходить в мире, зеркально симметричном по отношению к прошлому и будущему. Симметричная теория такие реакции запрещала строго-настрого.
Эти результаты произвели огромное впечатление на физиков. Они показали, что при определенных условиях в природе могут нарушаться, казалось бы, самые, фундаментальные свойства пространства и времени, что эти свойства не абсолютны, а относительны: в макромире одни, а в микромире могут быть совсем другие.
Есть еще один пункт, где можно ожидать существенного различия пространственно-временных свойств микро- и макромира. Это причинность.
Осенью 1956 г. в американском городе Сиэтле, на берегу Тихого океана, проходил Международный конгресс по теоретической физике. Это была одна из первых конференций, на которой после многих лет холодной войны, разделявшей Восток и Запад, встретились советские и американские ученые. Подводились итоги развития квантовой физики. Доклад следовал за докладом. Огромные доски, сплошь исписанные формулами, и (тогда это было еще новинкой) слайды с графиками и формулами, проецируемые на большой белый экран. Респектабельная академическая обстановка, лишь изредка нарушается веселым оживлением в зале, когда кто-либо из гостей-иностранцев смешно ошибался в английском языке.
«Температура» дискуссий резко поднялась после доклада академика Н. Н. Боголюбова. В докладе доказывалась теорема, позволяющая экспериментально проверить, не нарушается ли в микромире свойство причинности.
Причинность — это обусловленность одного явления другими. У философов есть более точные определения, но суть именно в этом — в такой связи событий, когда одно из них (причина) порождает другое (следствие).
Каждый из нас по собственному опыту знает, что беспричинных событий не бывает — в мире все взаимосвязано. Французский астроном, физик и математик Лаплас считал даже, что если бы в какой-то момент были точно известны движения всех тел и действующие между ними силы, то последующая судьба мира была бы определена однозначно, и можно было бы предсказать все — вплоть до направления полета маленькой мушки и траектории падения желтого листа с дерева. Однако число действующих в природе связей неисчерпаемо, они пересекаются так прихотливо, что возникает случайность, и исход явления начинает зависеть от множества второстепенных факторов. И тем не менее, терпеливо распутывая сложную сеть этих факторов, можно все более точно предсказать связанные с ними события.
Каждая физическая теория имеет свое понимание причинности — условий, при которых взаимодействие передается от одной пространственной точки к другой без помех во временном порядке событий. В механике Ньютона эти условия совсем не такие, как в квантовой теории. Чем совершеннее теория, тем точнее и детальнее определяется в ней причинность. Ясно, что это зависит и от того, какими свойствами теория наделяет пространство и время. Например, в теориях с обычным пространством-временем взаимодействия распространяются не так, как в общей теории относительности с ее искривленным пространством-временем, где могут быть даже самозамыкающиеся цепи событий, когда происходит возврат к исходному состоянию и вся история повторяется заново.
Читать дальше