В табл. 4.1. приводятся элементы орбит и звездные величины короткопериодических комет, минимальные расстояния между орбитами которых и орбитой Земли (MOID, Minimum Object Intersection Distance) меньше 0,1 а.е. Эти кометы можно считать потенциально опасными для Земли, поскольку из-за наличия плохо моделируемых воздействий на ядра комет их орбиты могут достаточно быстро меняться. Такие кометы имеют ненулевую вероятность столкновения с Землей. Уже состоявшиеся известные близкие прохождения комет вблизи Земли приводятся в приложении 2.
4.2. Физические характеристики, строение ядра
В последнее десятилетие наши знания о кометах и о процессах, происходящих на них, значительно расширились. Резкому повышению интереса к кометам способствовали подготовка и проведение международного космического эксперимента — полета космических аппаратов к комете Галлея. Целая флотилия космических станций — советские «Вега-1» и «Вега-2», западноевропейская «Джотто», японская «Суисей» (Планета-А) — исследовала комету Галлея. В ходе этих исследований были получены уникальные данные о составе и физических процессах, происходящих на поверхности ядра кометы, впервые с близкого расстояния было сфотографировано ядро кометы. Данные, полученные с космических станций, в основном подтвердили ледяную модель кометного ядра, разрабатываемую Ф. Уипплом с 1950 г. В книге [Comets II, 2005] обсуждаются четыре модели кометного ядра (рис. 4.6).
Рис. 4.6. Модели кометных ядер [Comets II, 2005]: а ) — «конгломерат льдов» [Weissman and Kieffer, 1981]; б ) — «агрегат фракталов» [Donn and Hughes, 1986]; в ) — «изначально смерзшийся щебень» [Weissman, 1986]; г ) — «склеенные льды» [Gombosi and Houpis, 1986]
Низкие оценки плотности кометного ядра, полученные из анализа движения кометы Галлея, можно объяснить кластерным механизмом образования кометного ядра, разработанным Донном (рис. 4.6, модель б ) и в дальнейшем развитым Гринбергом. Согласно этому механизму, ядро кометы образуется в результате налипания друг на друга отдельных гранул (зерен), представляющих собой частицы, по составу близкие к углистым хондритам. Промежутки между зернами заполнены легкосублимирующим веществом. По этой модели ядро кометы представляет собой очень рыхлое образование, подобное гигантскому снежному кому, и по структуре близко к частицам межпланетной пыли. В модели в , названной Вейссманом «изначально смерзшийся щебень», предполагается наличие некоторого количества крупных ледяных фрагментов, смерзшихся в единое тело. В момент сближения такого ядра с Солнцем в результате нагрева часть осколков может терять механический контакт и образовывать компактный метеорный рой. Эта модель представляет собой развитие идей Фесенкова о существовании кратных кометных ядер и позволяет объяснить распад ядра кометы Шумейкеров — Леви 9 на несколько десятков фрагментов в окрестности Юпитера в 1992 г. Нельзя исключить, что для части ледяных тел верна модель а , когда ядро представляет собой ледяной монолит. Модель г — «склеенные льды» — была разработана по результатам пролетов космических аппаратов около ядра кометы Галлея.
Альтернативными моделями являются модель каменистого монолита, разработанная Б. Ю. Левиным, и модель кометного ядра в виде облака частиц, которую в разное время и в различных модификациях отстаивали Дубяго [Дубяго, 1942], Воронцов-Вельяминов [Воронцов-Вельяминов, 1945], Рихтер [Richter, 1963] и Литтлтон [Lyttleton, 1977]. Интересна модель Литтлтона, которая дает механизм образования таких роев. Согласно его исследованиям, местом образования подобных роев может быть область антиапекса, где в результате гравитационного действия Солнца должна наблюдаться повышенная концентрация межзвездного вещества. Солнце, двигаясь сквозь межзвездное газопылевое облако, действует подобно гигантской линзе, фокусируя частицы в антиапексной области. Частицы огибают Солнце по гиперболам, пересекающимся в области антиапекса. Столкнувшись в этой области, они частично гасят свои скорости, и если полная скорость будет меньше параболической, то столкнувшаяся материя оказывается захваченной Солнцем.
Однако надо отметить, что и модель каменистого монолита, и модель кометного ядра в виде облака частиц наталкиваются на определенные трудности.
Приведем основные доводы в пользу ледяной модели:
1) негравитационные эффекты в движении комет лучше объясняются ледяной моделью;
Читать дальше
Конец ознакомительного отрывка
Купить книгу