Разумеется, все эти оценки являются нижним пределом, поскольку не учитывались эффекты вращения астероида и прочие факторы, приводящие в конечном счете к неизбежным потерям при реализации потенциальных возможностей. Хотя рассмотренные модельные примеры могут показаться несколько искусственными, тем не менее, они позволяют сделать некоторые выводы и предложения.
10.7.5. Результаты рассмотрения модельных схем противодействия.
1. Схемы увода объектов, даже минимальных размеров, в ситуациях перехвата явно не могут быть реализованы при текущем состоянии технологических средств космической техники. Опыт освоения космического пространства за прошедшее пятидесятилетие показывает, что упомянутая задача не может быть реализована также и в ближайшее пятидесятилетие при прогнозируемом развитии космической технологии.
2. В ситуациях прямого столкновения, по-видимому, единственной мыслимой возможностью предотвращения удара астероида по Земле является использование ядерного взрыва с целью разрушения опасного тела. Однако многочисленные работы приводят весьма противоречивые данные результатов воздействия ядерного взрыва [Губарев, 2008]. Поэтому необходимо предельно ясно сознавать, что практическое применение ядерного воздействия может состояться лишь после проведения обстоятельных теоретических исследований и экспериментов с ядерными взрывами в условиях космического пространства.
3. Для снижения требований к энергетике средств активного противодействия и их доведения до разумных пределов необходимо использовать схему маневра и всемерно увеличивать резервное время t r. Однако это заставляет отодвигать дальнюю границу обнаружения опасных объектов, которую желательно расширить хотя бы до 1–1,5 а.е. Тогда, приняв в качестве нижней границы размеров угрожающего объекта 100 м, логично сделать вывод о необходимости применения достаточно мощных оптических телескопов с апертурой ∼ 2 м и более, способных фиксировать слабые объекты на уровне видимых звездных величин порядка 23–24 m.
Эти требования следует предъявлять не только к наземным средствам наблюдения, но и к аналогичным средствам космического базирования [Chesley, 2006] (что обеспечит их эффективность и будет оправдывать затраты на развертывание).
4. Работа средств обнаружения астероида должна являться составной и неотъемлемой частью комплекса, решающего проблему точного определения и прогнозирования текущих координат астероида, обеспечивающего надежную и заблаговременную оценку обстоятельств тесного сближения астероида с Землей.
В целом рассмотрение модельных ситуаций, проведенное в данном разделе, показывает, что в настоящее время задача оперативного противодействия прямому удару гектометрового астероида по Земле практического решения не имеет, а ее перспективы на ближайшие десятилетия весьма сомнительны. Кроме того, можно ожидать, что каждый случай космической угрозы будет в той или иной степени уникальным и потребует своего подхода.
10.8. Задачи увода реального угрожающего объекта
Недавнее обнаружение астероида Апофис показывает, что близкий пролет астероида, хотя и не задевающего Землю, оказывается весьма опасным ввиду возможных резонансных возвратов, рассмотренных в главе 7. Как было показано выше в этой главе, противодействовать ситуации резонансного возврата существенно легче, чем осуществлять перехват. Хотя резонансные возвраты уже рассматривались в главе 7, тем не менее полезно вернуться к этому вопросу и привести некоторые дополнительные сведения.
На рис. 10.11 приведена схема прогнозируемого близкого пролета астероида Апофис мимо Земли в 2029 г. и показано изменение вектора скорости астероида при гравитационном взаимодействии астероида с планетой.
Изменение скорости астероида по направлению и величине означает появление его новой гелиоцентрической орбиты в результате сближения с Землей. Вследствие неизбежных ошибок определения орбиты и ее последующего прогноза астероид может иметь различные значения прицельного расстояния. На рис. 10.11 возможные отклонения от номинального значения прицельного расстояния показаны жирной прямой, перпендикулярной относительной скорости астероида (так называемая линия вариации прицельного расстояния). Длина отрезка этой прямой составляет несколько тысяч километров. Виртуальные (возможные) астероиды, прошедшие через различные точки прямой, обогнут Землю на разных расстояниях. В зависимости от величины этого расстояния Земля по-разному изменит гелиоцентрическую орбиту астероида. Внутри возможного разброса входных траекторий находится зона резонансного возврата (ЗРВ) (то же самое, что и «замочная скважина» в главе 7), размеры которой (∼ 600 м) показаны на врезке слева. Если Апофис пройдет через нее 13 апреля 2029 г., то через 7 лет (в 2036 г.) астероид столкнется с Землей.
Читать дальше
Конец ознакомительного отрывка
Купить книгу