Джеймс Гордон - Почему мы не проваливаемся сквозь пол

Здесь есть возможность читать онлайн «Джеймс Гордон - Почему мы не проваливаемся сквозь пол» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: sci_build, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Почему мы не проваливаемся сквозь пол: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Почему мы не проваливаемся сквозь пол»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Еще в первые десятилетия нашего века ответ на вопросы о свойствах материалов искали в эксперименте. И лишь последние 40 лет ученые, специалисты в области материаловедения, стали серьезно изучать строение материалов, убедившись, что их свойства зависят от совершенства в расположении атомов. Обо всем этом живо и с юмором рассказывает автор книги профессор университета в Рединге (Великобритания) Джеймс Эдвард Гордон. Книга рассчитана не только на школьников и студентов, но и на тех, кого по роду работы интересует поведение современных материалов и прочность конструкций.

Почему мы не проваливаемся сквозь пол — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Почему мы не проваливаемся сквозь пол», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Концентрация напряжений

Каковы бы ни были размеры надрезов-концентраторов, сама концентрация напряжений всегда играет огромную роль. Как показал Инглис, всякое отверстие, любой острый надрез в материале создает в нем местное повышение напряжений. Этот местный всплеск напряжения, величину которого можно рассчитать, зависит только от формы отверстия и никак не связан с его размерами. Все инженеры знают о существовании концентрации напряжений, но далеко не все ее чувствуют. Действительно, полагаясь лишь на здравый смысл, трудно понять, почему крохотное отверстие ослабляет материал в той же степени, что и большая дыра [25] Как мы увидим дальше, в главах 4 и 8, неупругое поведение пластичных металлов выравнивает напряжения вокруг малого отверстия, значительно ослабляя их концентрацию. Однако это не всегда наблюдается в металлах, работающих при циклическом нагружении, то есть в условиях усталости. : это несколько противоречит привычным представлениям. Там, где есть малые отверстия и надрезы, материал начинает разрушаться от усталости очень скоро, но и при обычном статическом разрушении, то есть под действием постоянных нагрузок, такие отверстия и надрезы делают свое дело. Когда стекольщик режет стекло, он не старается прорезать его на всю толщу листа, а делает лишь неглубокий надрез на поверхности, после чего по такой царапине стекло легко разламывается. Ослабляющее действие царапины практически не зависит от ее глубины: мелкая царапина действует ничуть не слабее глубокой, поскольку степень повышения напряжений зависит лишь от остроты ее кромки.

Нетрудно нарисовать физическую картину того, что же в действительности происходит у таких надрезов, как трещины, особенно если рассматривать существо дела на атомарном уровне. Обратившись к рис. 18, вы поймете, что при растяжении одиночная цепочка атомов испытывает равномерное напряжение, поэтому она обладает теоретической прочностью (рис. 18, а ).

Рис 18 Возникновение концентрации напряжений у кончика трещины Взяв еще - фото 18

Рис. 18. Возникновение концентрации напряжений у кончика трещины.

Взяв еще несколько таких же цепочек и расположив их так, чтобы они образовали кристалл (рис. 18, б ), мы увидим, что пока еще ничто не мешает каждой цепочке в отдельности нести ее полное теоретическое напряжение. Предположим далее, что мы перерезали несколько соседних межатомных связей, то есть создали трещину (рис. 18, в ). Разумеется, разорванные цепочки уже не смогут, как прежде, нести нагрузку, передавая ее от атома к атому. Теперь эту работу должны взять на себя оставшиеся цепочки. И сила как бы обходит трещину по самому ее краю. Таким образом, почти вся нагрузка, которую несли разрезанные атомные цепочки, падает теперь на единственную атомную связь у самого кончика трещины (рис. 18, г ). Ясно, что при подобных обстоятельствах перегруженная связь порвется раньше всех других. Когда же такое перегруженное звено лопнет, положение не изменится к лучшему. Напротив, оно ухудшится, так как на долю соседнего звена добавится не только нагрузка перерезанных с самого начала цепочек (при создании трещин), но еще и та доля нагрузки, которая приходилась на только что лопнувшую цепочку. Таким образом, трещина в кристалле оказывается инструментом, с помощью которого приложенная извне слабая сила рвет поочередно одну за другой прочнейшие межатомные связи. Так трещина и бежит по материалу, пока не разрушит его до конца.

Инглис вычислил коэффициенты концентрации напряжений, показывающие, во сколько раз местное напряжение больше среднего не только для прямоугольных вырезов, но и для вырезов другой формы, например круглых и цилиндрических отверстий. Сильно вытянутое эллиптическое отверстие можно считать трещиной. Для эллиптической трещины коэффициент концентрации напряжений будет выражаться формулой 1+2x( L / R ) 1/2где L есть полудлина трещины, a R - радиус кривизны ее кончика. Оказалось, что эта формула справедлива не только для эллипса: у всякого острого надреза коэффициент концентрации напряжений имеет почти такую же величину. Кстати сказать, у круглого отверстия местное напряжение втрое превышает среднее. Рассмотрим трещину длиной, скажем, 2 мкм с радиусом кривизны ее кончика 1 А. Такая трещина слишком мала, чтобы ее удалось увидеть с помощью оптического микроскопа, ее трудно обнаружить даже с помощью электронного микроскопа. Но тем не менее она повышает напряжение у своего кончика в 201 раз. При подобной концентрации напряжений прочность гриффитсова стекла должна снизиться от 1500 кг/мм 2до уровня всего нескольких килограммов на квадратный миллиметр, то есть до величины, близкой к прочности обычного стекла. Все это позволило Гриффитсу предположить, что в обычном стекле содержится множество очень тонких трещин, которые не поддаются обнаружению с помощью каких бы то ни было обычных средств. Он ничего не говорил о том, как они выглядят или каково их происхождение, а просто утверждал, что если они существуют в обычном стекле - а почему бы им не существовать! - то стекло должно быть малопрочным. Он предположил далее, что по какой-то неизвестной причине в тонких волокнах они образуются реже, а в тончайших почти не попадаются, быть может, лишь потому, что им там нет места.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Почему мы не проваливаемся сквозь пол»

Представляем Вашему вниманию похожие книги на «Почему мы не проваливаемся сквозь пол» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Джеймс Дашнер - Сквозь Топку
Джеймс Дашнер
Джеймс Калверт - Подо льдом к полюсу
Джеймс Калверт
Отзывы о книге «Почему мы не проваливаемся сквозь пол»

Обсуждение, отзывы о книге «Почему мы не проваливаемся сквозь пол» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x