Следующий этап химической эволюции — развитие фазово-обособленных систем. И здесь модельные эксперименты дают нам большое разнообразие возможных вариантов. Это — коацерватные капли Бунгенберг-де-Йонга и Опарина, пузырьки Голдейкра, микросферы Фокса и т. д. Отметим очень важное свойство фазовой обособленности или наличия границ в замкнутой системе. Полимеры, возникающие в растворах, не могут достичь высоких концентраций, в частности, из-за протекания обратных реакций. А полимеризация в ограниченном, выделенном объеме снижает в нем концентрацию мономеров и, соответственно, понижает осмотическое давление. Такое снижение приводит к перекачке мономеров из окружающей среды. И таким образом пробионты способны «высасывать» органику из первичного бульона, а значит, расти и почковаться или делиться. По образному выражению профессора Б. М. Медникова, [1980, с. 425], «не жизнь породила клетку, а клетка возникла раньше самой жизни».
Действительно, можно выделить ряд свойств пробионтов, чтобы они могли стать прародителями первичных живых клеток: способность к обмену с окружающей средой (проницаемая мембрана); способность к росту, увеличению объема; способность к делению и почкованию. Особого внимания заслуживает способность пробионтов к первичному метаболизму, т. е. к протеканию специфических синтетических и биохимических реакций. Это приводит к тому, что локальные условия в них сильно отличаются от условий внешней среды. Например, коацерваты Опарина, состоящие из полинуклеотида и белка, при добавлении полинуклеотид-фосфорилазы в присутствии АДФ способны синтезировать полинуклеотид-полиадениловую кислоту. При этом капли растут в размере и способны к механическому разделению.
В экспериментах Фокса в результате нагрева смеси аминокислот, с последующим охлаждением и переносом в воду, образовывались протеиноподобные микросферы. Они также характеризовались определенной каталитической активностью и были способны к почкованию или делению, как и большинство бактерий.
В модели Бернала полимеры сорбировались на глинистых минералах, и предполагалось, что далее они самоорганизуются в протоклетки с метаболизмом и отбором.
Эксперименты Опарина, Фокса и других — всего лишь демонстрация того, как работают физико-химические фазово-обособленные системы. Но они показывают аналогии жизненных процессов в простых системах и позволяют проиллюстрировать идеи выживания и отбора на уровне химических систем. Из этих экспериментов следует, что образование коацерватных капель и микросфер — это типичное поведение полимеров в растворах. Шансы таких капель на выживание повышаются, если они способны к каталитической активности, в результате которой могут расти в размерах. Те из них, которые обладали повышенной скоростью «высасывания» мономеров из окружающей среды, развивались быстрее и побеждали в конкурентной борьбе.
Таким образом, можно себе представить, что на протяжении целых геологических эр действовал мощный химический отбор. Он приводил к ускорению химических процессов. Механизм этого действия практически очевиден.
Согласно принципу максимальных скоростей реакций в случае нескольких открытых химических систем с общей внешней средой основной поток вещества идет через систему, которая обеспечивает наибольшую скорость химических превращений. Такие пробионтные системы в «первичном бульоне» получали преимущество перед соседними и начинали вытеснять более медленные (менее приспособленные) формы. Под воздействием внешних механических сил, таких как ветер и волны, происходило дробление (деление) капель. Запасы готовых органических веществ, пригодных для прямого использования, естественно, были ограниченны, что приводило к конкуренции за субстрат и, таким способом, к возникновению «предбиологического естественного отбора». Применение термина «естественный отбор» к эволюции коацерватов-пробионтов представляется вполне допустимым, так как никаких специфических отличий между популяциями протобионтов и современных микроорганизмов с точки зрения действия отбора не имеется. В том и другом случае отбор приводит к увеличению приспособленности популяции, что выражается через изменение действующих скоростей роста. А характер и направление отбора определяются условиями среды.
В этом смысле применение методов непрерывного культивирования, разработанных для исследования микробных популяций, по-видимому, является весьма перспективным для изучения действия отбора в популяциях протобионтов и в конечном счете для моделирования данного этапа эволюции, заключающегося в возникновении и совершенствовании метаболизма.
Читать дальше